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Linear Separability —_— R -
The goal of linear regression is to model the probability of a point belonging to a class. Typically,

we do this when there is some uncertainty, i.e. overlap, in our training set.

In some cases, we are able to draw a linear decision boundary to separate our data.

Above, we see that our data is linearly separable. We can draw a line (infinitely many lines, in
fact) between the clusters of red dots and green dots.
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This is not the case in the second example.



Again, let's look at data in 1D, but plotted in 2D (one dimension is the value of our variable, the
second dimension is the label, O or 1 --- this is equivalent to the drawings on the previous slide).
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e Onthe left, we have an example of linearly separable data. In the blue and purple are two
possible hyperplanes that can separate our data.

e However, on the right, we have non-linearly separable data. In this case we would use a tool
like logistic regression to model probabilities.



Linear Separability in Two Dimensions
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Here, we have examples of both linearly separable and non-linearly separable data in two
dimensions. Here, our data is truly two dimensional, as our feature space has two components ---
an x1 and a . The class is represented by the color (Y).
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Formal Definition of Linear Separability 2 Kpe=mx+h

We say data with d dimensions is linearly separable iff you can draw a degree d — 1 hyperplane
w

that completely separates the points.
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An equivalent definition: our data is linearly separable iff the following inequality perfectly

classifies it (i.e. with 100% accuracy), for some c: f{ above e, class 4
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o If we have a single feature &, our data is linearly separable iff we can find some 3, c sit.

Bx > cis a perfect classifier
e If we have three features x, X9, I3, our data is linearly separable iff we can find some
B1, Ba, B3, cst. Bixy + Baxs + B3xs > cis a perfect classifier

 Note: One or more of these 5 may be O!



Cross Entropy Loss and Linear Separability ?: 6 (x ?/@ )

Recall, when using cross entropy loss, our empirical risk is of the form
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R(B) = —— (ylogo(a”B) + (1 - y) log(1 — o(a" 4)))
If our data is linearly separable, we don't really need to perform logistic regression, since there's no
"uncertainty"” — we can just skip straight to finding a separating hyperplane. However, we don't

typically know this beforehand, and so we may end up trying to perform logistic regression on
linearly separable data. d—(t) — 1 ) ]
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o If our data is linearly separable, what's the minimum value of our average cross entropy loss? O

e What value ofgprovides this? <+ o9

e What problems does this cause? How can we account for this? ¢ “l“f}%'& l

4 Noto: the ophmal CE logs 5 vaver aet ully 0;3‘;"th; 7
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(b) Suppose you use gradient descent to train a logistic regression model on two design ma-
trices X, and X, and use some arbitrary threshold 7'. After training, you find that the
training accuracy for X, is 100% and the training accuracy for X; is 98%. What can you
say about whether is linearly separable for the two design matrices? X C e
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Evaluating the Effectiveness of a Classifier

Suppose we train a binary classifer, and suppose y represents actual values, and y_pred
represents predicted values.

Recall (no pun intended) the following definitions:

True Positives: TP = np.count_nonzero((y == y_pred) & (y_pred == 1))

True Negatives: TN = np.count_nonzero((y == y_pred) & (y_pred == 0))

False Positives: FP = np.count_nonzero((y !'= y pred) & (y_pred == 1))

False Negatives: FN = np.count_nonzero((y !'= y _pred) & (y_pred == 0))

Then, we have the following definitions:

B TP+TN
* Accuracy = 7 TN FPIFN
e Precision = Tl'i%
e Recall = 1r

TP+FN



(b) Suppose you use gradient descent to train a logistic regression model on two design ma-
trices X, and X, and use some arbitrary threshold 7'. After training, you find that the
training accuracy for X, is 100% and the training accuracy for X; is 98%. What can you
say about whether is linearly separable for the two design matrices? X C e

A

|0"(.XTF> ?_ T {/"’TWf(c'} c'afﬁ«“f"u X : ;
|
___--,-—,z-’; O’"(T) — €g's of = h7/;-flawa

'x —
T "¢



Evaluating the Effectiveness of a Classifier

We now introduce a new metric:
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False Positive Rate (FPR) =

This tells us the proportion of observations that were actually negative that we classified as
positive. You can think of this as being the "false alarm rate."

Similarly, we have

TF
all po5ihve s

which is the proportion of observations that were actually positive that we classified as
positive. You can think of this as being the "##ts rate". (Note, this is the same as recall.)
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Question: As our classification threshold increases, how do both of these quantities change?

TP
TP+ FN

=
-

True Positive Rate (TPR) = Recall =
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ROC Curves

o |deally, we would have a TPR (recall) of 1 and a FPR of O.

e As our threshold increases, TPR and FPR both decrease.

We can plot TPR vs. FPR to show this tradeoff.
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PR Curves

e |deally, we would have a precision of 1 and recall of 1.

e As our threshold increases, precision tends to increase, while recall decreases.

We can plot Precision vs. Recall to show this tradeoff.
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Area Under Curve

e The AUC (area under curve) metric for a specific curve (ROC or PR) gives you a single
number to evaluate your classifier's performance.

e |t does not tell you how to choose your threshold. To do that, you should look at the ROC / PR
curve and make a decision based off of your classification goal.
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SQL

Let's switch to code.

13



