from datascience import *
import numpy as np
Table.interactive_plots()
wm = Table.read_table('data/walmart.csv').select('STREETADDR', 'STRCITY', 'STRSTATE', 'type_store', 'LAT', 'LON', 'YEAR')
wm
STREETADDR | STRCITY | STRSTATE | type_store | LAT | LON | YEAR |
---|---|---|---|---|---|---|
2110 WEST WALNUT | Rogers | AR | Supercenter | 36.3422 | -94.0714 | 1962 |
1417 HWY 62/65 N | Harrison | AR | Supercenter | 36.237 | -93.0935 | 1964 |
2901 HWY 412 EAST | Siloam Springs | AR | Supercenter | 36.1799 | -94.5021 | 1965 |
1621 NORTH BUSINESS 9 | Morrilton | AR | Supercenter | 35.1565 | -92.7586 | 1967 |
3801 CAMP ROBINSON RD. | North Little Rock | AR | Wal-Mart | 34.8133 | -92.3023 | 1967 |
2020 SOUTH MUSKOGEE | Tahlequah | OK | Supercenter | 35.9237 | -94.9719 | 1968 |
2705 GRAND AVE | Carthage | MO | Supercenter | 37.169 | -94.3116 | 1968 |
1500 LYNN RIGGS BLVD | Claremore | OK | Supercenter | 36.3271 | -95.6119 | 1968 |
65 WAL-MART DRIVE | Mountain Home | AR | Supercenter | 36.329 | -92.3578 | 1968 |
1303 SOUTH MAIN | Sikeston | MO | Supercenter | 36.8912 | -89.5836 | 1968 |
... (2982 rows omitted)
wm.group('YEAR')
YEAR | count |
---|---|
1962 | 1 |
1964 | 1 |
1965 | 1 |
1967 | 2 |
1968 | 5 |
1969 | 5 |
1970 | 5 |
1971 | 15 |
1972 | 17 |
1973 | 19 |
... (33 rows omitted)
wm.group('YEAR').plot('YEAR',
title = 'Number of Walmarts Opened Per Year')
wm_per_year = wm.group('YEAR')
wm_per_year = wm_per_year.with_columns(
'total', np.cumsum(wm_per_year.column('count'))
)
wm_per_year
YEAR | count | total |
---|---|---|
1962 | 1 | 1 |
1964 | 1 | 2 |
1965 | 1 | 3 |
1967 | 2 | 5 |
1968 | 5 | 10 |
1969 | 5 | 15 |
1970 | 5 | 20 |
1971 | 15 | 35 |
1972 | 17 | 52 |
1973 | 19 | 71 |
... (33 rows omitted)
wm_per_year.plot('YEAR', 'total',
title = 'Total Number of Walmarts Over Time')
wm_ca = wm.where('STRSTATE', 'CA')
wm_ca
STREETADDR | STRCITY | STRSTATE | type_store | LAT | LON | YEAR |
---|---|---|---|---|---|---|
44765 VALLEY CENTRAL WAY | Lancaster | CA | Wal-Mart | 34.7289 | -118.327 | 1990 |
2150 NO. WATERMAN AVENUE | El Centro | CA | Supercenter | 32.7834 | -115.577 | 1990 |
2225 PLAZA PARKWAY | Modesto | CA | Wal-Mart | 37.6718 | -121.012 | 1990 |
3223 EAST HAMMER LANE | Stockton | CA | Supercenter | 38.0389 | -121.242 | 1991 |
2300 WHITE LANE | Bakersfield | CA | Wal-Mart | 35.3442 | -119.022 | 1991 |
355 ORO DAM BLVD | Oroville | CA | Wal-Mart | 39.5586 | -121.589 | 1991 |
1977 WEST CLEVELAND AVE | Madera | CA | Wal-Mart | 36.9148 | -120.158 | 1991 |
15272 BEAR VALLEY ROAD | Victorville | CA | Wal-Mart | 34.4895 | -117.353 | 1991 |
911 SOUTH CHINA LAKE BLVD | Ridgecrest | CA | Wal-Mart | 35.5992 | -117.681 | 1991 |
1025 SOUTH MAIN | Red Bluff | CA | Wal-Mart | 40.1838 | -122.241 | 1991 |
... (149 rows omitted)
wm_ca.select('LAT', 'LON')
LAT | LON |
---|---|
34.7289 | -118.327 |
32.7834 | -115.577 |
37.6718 | -121.012 |
38.0389 | -121.242 |
35.3442 | -119.022 |
39.5586 | -121.589 |
36.9148 | -120.158 |
34.4895 | -117.353 |
35.5992 | -117.681 |
40.1838 | -122.241 |
... (149 rows omitted)
Circle.map_table(wm_ca.select('LAT', 'LON'))
Circle.map_table(wm_ca.select('LAT', 'LON'),
area = 200,
weight = 1.5,
line_color = 'gold',
color = 'purple',
fill_opacity = 0.8
)
labels
¶wm_ca.select('LAT', 'LON', 'STREETADDR')
LAT | LON | STREETADDR |
---|---|---|
34.7289 | -118.327 | 44765 VALLEY CENTRAL WAY |
32.7834 | -115.577 | 2150 NO. WATERMAN AVENUE |
37.6718 | -121.012 | 2225 PLAZA PARKWAY |
38.0389 | -121.242 | 3223 EAST HAMMER LANE |
35.3442 | -119.022 | 2300 WHITE LANE |
39.5586 | -121.589 | 355 ORO DAM BLVD |
36.9148 | -120.158 | 1977 WEST CLEVELAND AVE |
34.4895 | -117.353 | 15272 BEAR VALLEY ROAD |
35.5992 | -117.681 | 911 SOUTH CHINA LAKE BLVD |
40.1838 | -122.241 | 1025 SOUTH MAIN |
... (149 rows omitted)
wm_ca_labeled = wm_ca.select('LAT', 'LON', 'STREETADDR').relabeled('STREETADDR', 'labels')
wm_ca_labeled
LAT | LON | labels |
---|---|---|
34.7289 | -118.327 | 44765 VALLEY CENTRAL WAY |
32.7834 | -115.577 | 2150 NO. WATERMAN AVENUE |
37.6718 | -121.012 | 2225 PLAZA PARKWAY |
38.0389 | -121.242 | 3223 EAST HAMMER LANE |
35.3442 | -119.022 | 2300 WHITE LANE |
39.5586 | -121.589 | 355 ORO DAM BLVD |
36.9148 | -120.158 | 1977 WEST CLEVELAND AVE |
34.4895 | -117.353 | 15272 BEAR VALLEY ROAD |
35.5992 | -117.681 | 911 SOUTH CHINA LAKE BLVD |
40.1838 | -122.241 | 1025 SOUTH MAIN |
... (149 rows omitted)
Circle.map_table(wm_ca_labeled)
color_scale
¶wm_ca_scales = wm_ca.select('LAT', 'LON', 'STRCITY', 'YEAR') \
.relabeled(['STRCITY', 'YEAR'], ['labels', 'color_scale'])
wm_ca_scales
LAT | LON | labels | color_scale |
---|---|---|---|
34.7289 | -118.327 | Lancaster | 1990 |
32.7834 | -115.577 | El Centro | 1990 |
37.6718 | -121.012 | Modesto | 1990 |
38.0389 | -121.242 | Stockton | 1991 |
35.3442 | -119.022 | Bakersfield | 1991 |
39.5586 | -121.589 | Oroville | 1991 |
36.9148 | -120.158 | Madera | 1991 |
34.4895 | -117.353 | Victorville | 1991 |
35.5992 | -117.681 | Ridgecrest | 1991 |
40.1838 | -122.241 | Red Bluff | 1991 |
... (149 rows omitted)
Circle.map_table(wm_ca_scales,
fill_opacity = 0.8,
line_color = None,
area = 200)
The map above confirms the claims of this LA Times article from 1990, which says:
The company plans to open 10 stores in California in 1990 and 1991, with most to be located in the interior sections of the state. This year, it will open stores in Lancaster, Victorville, El Centro, Madera, Modesto, Ridgecrest and Stockton. In 1991, it plans stores in Elk Grove, Hanford and Bakersfield.
colors
¶wm_ca
STREETADDR | STRCITY | STRSTATE | type_store | LAT | LON | YEAR |
---|---|---|---|---|---|---|
44765 VALLEY CENTRAL WAY | Lancaster | CA | Wal-Mart | 34.7289 | -118.327 | 1990 |
2150 NO. WATERMAN AVENUE | El Centro | CA | Supercenter | 32.7834 | -115.577 | 1990 |
2225 PLAZA PARKWAY | Modesto | CA | Wal-Mart | 37.6718 | -121.012 | 1990 |
3223 EAST HAMMER LANE | Stockton | CA | Supercenter | 38.0389 | -121.242 | 1991 |
2300 WHITE LANE | Bakersfield | CA | Wal-Mart | 35.3442 | -119.022 | 1991 |
355 ORO DAM BLVD | Oroville | CA | Wal-Mart | 39.5586 | -121.589 | 1991 |
1977 WEST CLEVELAND AVE | Madera | CA | Wal-Mart | 36.9148 | -120.158 | 1991 |
15272 BEAR VALLEY ROAD | Victorville | CA | Wal-Mart | 34.4895 | -117.353 | 1991 |
911 SOUTH CHINA LAKE BLVD | Ridgecrest | CA | Wal-Mart | 35.5992 | -117.681 | 1991 |
1025 SOUTH MAIN | Red Bluff | CA | Wal-Mart | 40.1838 | -122.241 | 1991 |
... (149 rows omitted)
def color_from_type(type_store):
if type_store == 'Wal-Mart':
return 'blue'
else:
return 'red'
wm_ca = wm_ca.with_columns(
'colors', wm_ca.apply(color_from_type, 'type_store')
)
wm_ca
STREETADDR | STRCITY | STRSTATE | type_store | LAT | LON | YEAR | colors |
---|---|---|---|---|---|---|---|
44765 VALLEY CENTRAL WAY | Lancaster | CA | Wal-Mart | 34.7289 | -118.327 | 1990 | blue |
2150 NO. WATERMAN AVENUE | El Centro | CA | Supercenter | 32.7834 | -115.577 | 1990 | red |
2225 PLAZA PARKWAY | Modesto | CA | Wal-Mart | 37.6718 | -121.012 | 1990 | blue |
3223 EAST HAMMER LANE | Stockton | CA | Supercenter | 38.0389 | -121.242 | 1991 | red |
2300 WHITE LANE | Bakersfield | CA | Wal-Mart | 35.3442 | -119.022 | 1991 | blue |
355 ORO DAM BLVD | Oroville | CA | Wal-Mart | 39.5586 | -121.589 | 1991 | blue |
1977 WEST CLEVELAND AVE | Madera | CA | Wal-Mart | 36.9148 | -120.158 | 1991 | blue |
15272 BEAR VALLEY ROAD | Victorville | CA | Wal-Mart | 34.4895 | -117.353 | 1991 | blue |
911 SOUTH CHINA LAKE BLVD | Ridgecrest | CA | Wal-Mart | 35.5992 | -117.681 | 1991 | blue |
1025 SOUTH MAIN | Red Bluff | CA | Wal-Mart | 40.1838 | -122.241 | 1991 | blue |
... (149 rows omitted)
wm_ca.select('LAT', 'LON', 'colors')
LAT | LON | colors |
---|---|---|
34.7289 | -118.327 | blue |
32.7834 | -115.577 | red |
37.6718 | -121.012 | blue |
38.0389 | -121.242 | red |
35.3442 | -119.022 | blue |
39.5586 | -121.589 | blue |
36.9148 | -120.158 | blue |
34.4895 | -117.353 | blue |
35.5992 | -117.681 | blue |
40.1838 | -122.241 | blue |
... (149 rows omitted)
Circle.map_table(wm_ca.select('LAT', 'LON', 'colors'),
fill_opacity = 0.6,
line_color = None,
area = 200)
It seems like most Walmarts in California are standard locations and only a few are Supercenters.
What about in the rest of the country?
wm = wm.with_columns(
'colors', wm.apply(color_from_type, 'type_store')
)
Circle.map_table(wm.select('LAT', 'LON', 'colors'),
fill_opacity = 0.8,
line_color = None,
area = 20)
In many large metro areas there is a concentration of standard Walmarts (blue). Supercenters are more common in the eastern part of the country.
Remember this data is from 2006; things have changed since then.
wm
STREETADDR | STRCITY | STRSTATE | type_store | LAT | LON | YEAR | colors |
---|---|---|---|---|---|---|---|
2110 WEST WALNUT | Rogers | AR | Supercenter | 36.3422 | -94.0714 | 1962 | red |
1417 HWY 62/65 N | Harrison | AR | Supercenter | 36.237 | -93.0935 | 1964 | red |
2901 HWY 412 EAST | Siloam Springs | AR | Supercenter | 36.1799 | -94.5021 | 1965 | red |
1621 NORTH BUSINESS 9 | Morrilton | AR | Supercenter | 35.1565 | -92.7586 | 1967 | red |
3801 CAMP ROBINSON RD. | North Little Rock | AR | Wal-Mart | 34.8133 | -92.3023 | 1967 | blue |
2020 SOUTH MUSKOGEE | Tahlequah | OK | Supercenter | 35.9237 | -94.9719 | 1968 | red |
2705 GRAND AVE | Carthage | MO | Supercenter | 37.169 | -94.3116 | 1968 | red |
1500 LYNN RIGGS BLVD | Claremore | OK | Supercenter | 36.3271 | -95.6119 | 1968 | red |
65 WAL-MART DRIVE | Mountain Home | AR | Supercenter | 36.329 | -92.3578 | 1968 | red |
1303 SOUTH MAIN | Sikeston | MO | Supercenter | 36.8912 | -89.5836 | 1968 | red |
... (2982 rows omitted)
# qc = wm.where('STRSTATE', 'AR') \
# .select(..., ..., 'YEAR', ...) \
# .relabeled('YEAR', ...)
# Circle.map_table(qc,
# line_color = None,
# fill_opacity = 0.7)
wm_ca.select('LAT', 'LON', 'colors')
LAT | LON | colors |
---|---|---|
34.7289 | -118.327 | blue |
32.7834 | -115.577 | red |
37.6718 | -121.012 | blue |
38.0389 | -121.242 | red |
35.3442 | -119.022 | blue |
39.5586 | -121.589 | blue |
36.9148 | -120.158 | blue |
34.4895 | -117.353 | blue |
35.5992 | -117.681 | blue |
40.1838 | -122.241 | blue |
... (149 rows omitted)
Marker.map_table(wm_ca.select('LAT', 'LON', 'colors'))
marker_icon
¶Most icon names at this site work, but make sure to remove the term "glyphicon".
# Try changing 'shopping-cart' to 'off', 'euro', or 'remove'
Marker.map_table(wm_ca.select('LAT', 'LON', 'colors'), marker_icon = 'shopping-cart')
clustered_marker
¶Marker.map_table(wm.select('LAT', 'LON'), clustered_marker = True, marker_icon = 'shopping-cart')
This data was pulled from Johns Hopkins' Center For Systems Science And Engineering on April 6th, 2021.
It describes the number of cumulative cases for each county, every day since January 22, 2020.
covid = Table.read_table('data/jhu-covid.csv')
covid
UID | iso2 | iso3 | code3 | FIPS | Admin2 | Province_State | Country_Region | Lat | Long_ | Combined_Key | 1/22/20 | 1/23/20 | 1/24/20 | 1/25/20 | 1/26/20 | 1/27/20 | 1/28/20 | 1/29/20 | 1/30/20 | 1/31/20 | 2/1/20 | 2/2/20 | 2/3/20 | 2/4/20 | 2/5/20 | 2/6/20 | 2/7/20 | 2/8/20 | 2/9/20 | 2/10/20 | 2/11/20 | 2/12/20 | 2/13/20 | 2/14/20 | 2/15/20 | 2/16/20 | 2/17/20 | 2/18/20 | 2/19/20 | 2/20/20 | 2/21/20 | 2/22/20 | 2/23/20 | 2/24/20 | 2/25/20 | 2/26/20 | 2/27/20 | 2/28/20 | 2/29/20 | 3/1/20 | 3/2/20 | 3/3/20 | 3/4/20 | 3/5/20 | 3/6/20 | 3/7/20 | 3/8/20 | 3/9/20 | 3/10/20 | 3/11/20 | 3/12/20 | 3/13/20 | 3/14/20 | 3/15/20 | 3/16/20 | 3/17/20 | 3/18/20 | 3/19/20 | 3/20/20 | 3/21/20 | 3/22/20 | 3/23/20 | 3/24/20 | 3/25/20 | 3/26/20 | 3/27/20 | 3/28/20 | 3/29/20 | 3/30/20 | 3/31/20 | 4/1/20 | 4/2/20 | 4/3/20 | 4/4/20 | 4/5/20 | 4/6/20 | 4/7/20 | 4/8/20 | 4/9/20 | 4/10/20 | 4/11/20 | 4/12/20 | 4/13/20 | 4/14/20 | 4/15/20 | 4/16/20 | 4/17/20 | 4/18/20 | 4/19/20 | 4/20/20 | 4/21/20 | 4/22/20 | 4/23/20 | 4/24/20 | 4/25/20 | 4/26/20 | 4/27/20 | 4/28/20 | 4/29/20 | 4/30/20 | 5/1/20 | 5/2/20 | 5/3/20 | 5/4/20 | 5/5/20 | 5/6/20 | 5/7/20 | 5/8/20 | 5/9/20 | 5/10/20 | 5/11/20 | 5/12/20 | 5/13/20 | 5/14/20 | 5/15/20 | 5/16/20 | 5/17/20 | 5/18/20 | 5/19/20 | 5/20/20 | 5/21/20 | 5/22/20 | 5/23/20 | 5/24/20 | 5/25/20 | 5/26/20 | 5/27/20 | 5/28/20 | 5/29/20 | 5/30/20 | 5/31/20 | 6/1/20 | 6/2/20 | 6/3/20 | 6/4/20 | 6/5/20 | 6/6/20 | 6/7/20 | 6/8/20 | 6/9/20 | 6/10/20 | 6/11/20 | 6/12/20 | 6/13/20 | 6/14/20 | 6/15/20 | 6/16/20 | 6/17/20 | 6/18/20 | 6/19/20 | 6/20/20 | 6/21/20 | 6/22/20 | 6/23/20 | 6/24/20 | 6/25/20 | 6/26/20 | 6/27/20 | 6/28/20 | 6/29/20 | 6/30/20 | 7/1/20 | 7/2/20 | 7/3/20 | 7/4/20 | 7/5/20 | 7/6/20 | 7/7/20 | 7/8/20 | 7/9/20 | 7/10/20 | 7/11/20 | 7/12/20 | 7/13/20 | 7/14/20 | 7/15/20 | 7/16/20 | 7/17/20 | 7/18/20 | 7/19/20 | 7/20/20 | 7/21/20 | 7/22/20 | 7/23/20 | 7/24/20 | 7/25/20 | 7/26/20 | 7/27/20 | 7/28/20 | 7/29/20 | 7/30/20 | 7/31/20 | 8/1/20 | 8/2/20 | 8/3/20 | 8/4/20 | 8/5/20 | 8/6/20 | 8/7/20 | 8/8/20 | 8/9/20 | 8/10/20 | 8/11/20 | 8/12/20 | 8/13/20 | 8/14/20 | 8/15/20 | 8/16/20 | 8/17/20 | 8/18/20 | 8/19/20 | 8/20/20 | 8/21/20 | 8/22/20 | 8/23/20 | 8/24/20 | 8/25/20 | 8/26/20 | 8/27/20 | 8/28/20 | 8/29/20 | 8/30/20 | 8/31/20 | 9/1/20 | 9/2/20 | 9/3/20 | 9/4/20 | 9/5/20 | 9/6/20 | 9/7/20 | 9/8/20 | 9/9/20 | 9/10/20 | 9/11/20 | 9/12/20 | 9/13/20 | 9/14/20 | 9/15/20 | 9/16/20 | 9/17/20 | 9/18/20 | 9/19/20 | 9/20/20 | 9/21/20 | 9/22/20 | 9/23/20 | 9/24/20 | 9/25/20 | 9/26/20 | 9/27/20 | 9/28/20 | 9/29/20 | 9/30/20 | 10/1/20 | 10/2/20 | 10/3/20 | 10/4/20 | 10/5/20 | 10/6/20 | 10/7/20 | 10/8/20 | 10/9/20 | 10/10/20 | 10/11/20 | 10/12/20 | 10/13/20 | 10/14/20 | 10/15/20 | 10/16/20 | 10/17/20 | 10/18/20 | 10/19/20 | 10/20/20 | 10/21/20 | 10/22/20 | 10/23/20 | 10/24/20 | 10/25/20 | 10/26/20 | 10/27/20 | 10/28/20 | 10/29/20 | 10/30/20 | 10/31/20 | 11/1/20 | 11/2/20 | 11/3/20 | 11/4/20 | 11/5/20 | 11/6/20 | 11/7/20 | 11/8/20 | 11/9/20 | 11/10/20 | 11/11/20 | 11/12/20 | 11/13/20 | 11/14/20 | 11/15/20 | 11/16/20 | 11/17/20 | 11/18/20 | 11/19/20 | 11/20/20 | 11/21/20 | 11/22/20 | 11/23/20 | 11/24/20 | 11/25/20 | 11/26/20 | 11/27/20 | 11/28/20 | 11/29/20 | 11/30/20 | 12/1/20 | 12/2/20 | 12/3/20 | 12/4/20 | 12/5/20 | 12/6/20 | 12/7/20 | 12/8/20 | 12/9/20 | 12/10/20 | 12/11/20 | 12/12/20 | 12/13/20 | 12/14/20 | 12/15/20 | 12/16/20 | 12/17/20 | 12/18/20 | 12/19/20 | 12/20/20 | 12/21/20 | 12/22/20 | 12/23/20 | 12/24/20 | 12/25/20 | 12/26/20 | 12/27/20 | 12/28/20 | 12/29/20 | 12/30/20 | 12/31/20 | 1/1/21 | 1/2/21 | 1/3/21 | 1/4/21 | 1/5/21 | 1/6/21 | 1/7/21 | 1/8/21 | 1/9/21 | 1/10/21 | 1/11/21 | 1/12/21 | 1/13/21 | 1/14/21 | 1/15/21 | 1/16/21 | 1/17/21 | 1/18/21 | 1/19/21 | 1/20/21 | 1/21/21 | 1/22/21 | 1/23/21 | 1/24/21 | 1/25/21 | 1/26/21 | 1/27/21 | 1/28/21 | 1/29/21 | 1/30/21 | 1/31/21 | 2/1/21 | 2/2/21 | 2/3/21 | 2/4/21 | 2/5/21 | 2/6/21 | 2/7/21 | 2/8/21 | 2/9/21 | 2/10/21 | 2/11/21 | 2/12/21 | 2/13/21 | 2/14/21 | 2/15/21 | 2/16/21 | 2/17/21 | 2/18/21 | 2/19/21 | 2/20/21 | 2/21/21 | 2/22/21 | 2/23/21 | 2/24/21 | 2/25/21 | 2/26/21 | 2/27/21 | 2/28/21 | 3/1/21 | 3/2/21 | 3/3/21 | 3/4/21 | 3/5/21 | 3/6/21 | 3/7/21 | 3/8/21 | 3/9/21 | 3/10/21 | 3/11/21 | 3/12/21 | 3/13/21 | 3/14/21 | 3/15/21 | 3/16/21 | 3/17/21 | 3/18/21 | 3/19/21 | 3/20/21 | 3/21/21 | 3/22/21 | 3/23/21 | 3/24/21 | 3/25/21 | 3/26/21 | 3/27/21 | 3/28/21 | 3/29/21 | 3/30/21 | 3/31/21 | 4/1/21 | 4/2/21 | 4/3/21 | 4/4/21 | 4/5/21 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
84001001 | US | USA | 840 | 1001 | Autauga | Alabama | US | 32.5395 | -86.6441 | Autauga, Alabama, US | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 5 | 6 | 6 | 6 | 6 | 8 | 8 | 10 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 17 | 18 | 19 | 19 | 19 | 23 | 24 | 24 | 24 | 25 | 26 | 28 | 30 | 32 | 33 | 36 | 36 | 36 | 37 | 39 | 41 | 42 | 43 | 47 | 51 | 54 | 54 | 56 | 58 | 62 | 63 | 72 | 81 | 88 | 90 | 100 | 100 | 108 | 118 | 124 | 130 | 135 | 148 | 151 | 156 | 160 | 171 | 191 | 192 | 204 | 211 | 216 | 227 | 237 | 239 | 241 | 248 | 259 | 264 | 271 | 282 | 295 | 315 | 323 | 334 | 361 | 369 | 371 | 377 | 404 | 415 | 435 | 438 | 447 | 458 | 474 | 480 | 493 | 500 | 505 | 528 | 538 | 554 | 562 | 570 | 584 | 601 | 620 | 623 | 656 | 663 | 670 | 691 | 708 | 736 | 749 | 764 | 785 | 797 | 822 | 850 | 862 | 872 | 885 | 905 | 918 | 939 | 953 | 971 | 988 | 995 | 1006 | 1029 | 1042 | 1064 | 1078 | 1086 | 1086 | 1109 | 1126 | 1145 | 1175 | 1186 | 1200 | 1224 | 1229 | 1235 | 1245 | 1252 | 1258 | 1276 | 1281 | 1293 | 1304 | 1316 | 1318 | 1337 | 1343 | 1357 | 1365 | 1375 | 1391 | 1424 | 1429 | 1440 | 1442 | 1454 | 1462 | 1474 | 1477 | 1488 | 1494 | 1505 | 1526 | 1530 | 1543 | 1551 | 1567 | 1586 | 1601 | 1614 | 1650 | 1659 | 1675 | 1676 | 1697 | 1697 | 1711 | 1736 | 1750 | 1758 | 1770 | 1776 | 1785 | 1792 | 1799 | 1812 | 1821 | 1824 | 1832 | 1843 | 1847 | 1875 | 1894 | 1901 | 1907 | 1921 | 1925 | 1946 | 1958 | 1971 | 1985 | 1995 | 2006 | 2018 | 2021 | 2027 | 2040 | 2055 | 2070 | 2079 | 2098 | 2120 | 2134 | 2154 | 2168 | 2182 | 2195 | 2210 | 2229 | 2244 | 2257 | 2286 | 2307 | 2328 | 2328 | 2351 | 2385 | 2417 | 2435 | 2456 | 2481 | 2506 | 2529 | 2554 | 2580 | 2597 | 2617 | 2634 | 2661 | 2686 | 2704 | 2716 | 2735 | 2751 | 2780 | 2818 | 2873 | 2893 | 2945 | 2979 | 3005 | 3043 | 3087 | 3117 | 3186 | 3233 | 3258 | 3300 | 3329 | 3426 | 3510 | 3570 | 3647 | 3698 | 3741 | 3780 | 3841 | 3889 | 3942 | 3990 | 3999 | 4029 | 4065 | 4105 | 4164 | 4190 | 4239 | 4268 | 4305 | 4336 | 4546 | 4645 | 4705 | 4770 | 4847 | 4879 | 4902 | 4970 | 4998 | 5075 | 5103 | 5154 | 5184 | 5198 | 5227 | 5257 | 5270 | 5327 | 5358 | 5376 | 5407 | 5440 | 5499 | 5554 | 5596 | 5596 | 5669 | 5683 | 5723 | 5753 | 5811 | 5824 | 5856 | 5869 | 5881 | 5910 | 5930 | 5970 | 5984 | 6002 | 6023 | 6024 | 6038 | 6050 | 6071 | 6079 | 6092 | 6117 | 6121 | 6143 | 6172 | 6203 | 6228 | 6248 | 6264 | 6270 | 6303 | 6313 | 6324 | 6333 | 6344 | 6347 | 6364 | 6371 | 6400 | 6409 | 6409 | 6416 | 6426 | 6471 | 6474 | 6483 | 6495 | 6498 | 6510 | 6513 | 6517 | 6525 | 6533 | 6540 | 6543 | 6562 | 6570 | 6577 | 6580 | 6589 | 6595 | 6606 | 6617 | 6619 | 6620 |
84001003 | US | USA | 840 | 1003 | Baldwin | Alabama | US | 30.7277 | -87.7221 | Baldwin, Alabama, US | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 5 | 5 | 6 | 6 | 18 | 19 | 22 | 23 | 26 | 29 | 31 | 34 | 39 | 43 | 47 | 54 | 63 | 64 | 70 | 75 | 82 | 93 | 100 | 104 | 106 | 110 | 116 | 120 | 126 | 134 | 143 | 148 | 155 | 161 | 167 | 172 | 174 | 180 | 180 | 185 | 190 | 190 | 194 | 199 | 207 | 211 | 219 | 224 | 226 | 230 | 237 | 247 | 253 | 261 | 267 | 267 | 269 | 277 | 277 | 278 | 280 | 281 | 284 | 285 | 289 | 289 | 290 | 292 | 298 | 299 | 301 | 302 | 305 | 312 | 321 | 327 | 332 | 338 | 350 | 357 | 365 | 367 | 375 | 377 | 379 | 389 | 402 | 408 | 418 | 426 | 439 | 453 | 466 | 505 | 549 | 573 | 628 | 668 | 691 | 739 | 831 | 847 | 861 | 893 | 979 | 1042 | 1118 | 1175 | 1215 | 1280 | 1349 | 1396 | 1506 | 1588 | 1675 | 1806 | 1925 | 1996 | 2085 | 2169 | 2344 | 2482 | 2610 | 2675 | 2733 | 2800 | 2873 | 3001 | 3075 | 3116 | 3194 | 3241 | 3298 | 3347 | 3409 | 3473 | 3533 | 3575 | 3676 | 3700 | 3749 | 3783 | 3825 | 3881 | 3923 | 3936 | 3959 | 3994 | 4029 | 4058 | 4100 | 4132 | 4148 | 4171 | 4247 | 4296 | 4330 | 4408 | 4502 | 4519 | 4538 | 4563 | 4599 | 4626 | 4654 | 4684 | 4700 | 4725 | 4755 | 4796 | 4845 | 4881 | 4915 | 4934 | 4949 | 4964 | 4982 | 4994 | 5016 | 5029 | 5053 | 5090 | 5106 | 5127 | 5397 | 5419 | 5465 | 5524 | 5550 | 5592 | 5954 | 5981 | 6009 | 6034 | 6045 | 6075 | 6103 | 6114 | 6144 | 6164 | 6176 | 6192 | 6222 | 6247 | 6266 | 6313 | 6332 | 6350 | 6356 | 6384 | 6425 | 6459 | 6599 | 6619 | 6642 | 6677 | 6694 | 6728 | 6757 | 6879 | 6931 | 6955 | 6974 | 6991 | 7054 | 7093 | 7133 | 7184 | 7226 | 7263 | 7345 | 7348 | 7409 | 7454 | 7523 | 7596 | 7646 | 7696 | 7772 | 7849 | 7933 | 8038 | 8131 | 8199 | 8269 | 8376 | 8473 | 8576 | 8603 | 8733 | 8820 | 8890 | 9051 | 9163 | 9341 | 9501 | 9626 | 9728 | 9821 | 9974 | 10087 | 10288 | 10489 | 10665 | 10806 | 10898 | 11061 | 11212 | 11364 | 11556 | 11722 | 11827 | 11952 | 12155 | 12321 | 12521 | 12666 | 12708 | 12825 | 12962 | 13172 | 13392 | 13601 | 13823 | 13955 | 14064 | 14187 | 14440 | 14656 | 14845 | 15052 | 15202 | 15327 | 15417 | 15572 | 15701 | 15841 | 16002 | 16176 | 16251 | 16346 | 16513 | 16653 | 16798 | 16981 | 17128 | 17256 | 17333 | 17496 | 17629 | 17779 | 17922 | 17922 | 18126 | 18211 | 18344 | 18418 | 18494 | 18568 | 18668 | 18723 | 18763 | 18824 | 18888 | 18960 | 18994 | 19051 | 19105 | 19136 | 19176 | 19267 | 19324 | 19361 | 19392 | 19433 | 19461 | 19554 | 19635 | 19670 | 19698 | 19714 | 19732 | 19758 | 19790 | 19856 | 19873 | 19890 | 19915 | 19935 | 19942 | 19962 | 20012 | 20044 | 20072 | 20091 | 20103 | 20210 | 20227 | 20263 | 20287 | 20317 | 20329 | 20347 | 20361 | 20354 | 20395 | 20417 | 20423 | 20453 | 20473 | 20487 | 20492 | 20505 | 20523 | 20519 | 20526 | 20541 | 20542 |
84001005 | US | USA | 840 | 1005 | Barbour | Alabama | US | 31.8683 | -85.3871 | Barbour, Alabama, US | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 3 | 3 | 4 | 4 | 4 | 8 | 9 | 10 | 10 | 10 | 11 | 13 | 14 | 15 | 18 | 20 | 22 | 28 | 29 | 31 | 33 | 34 | 34 | 35 | 38 | 38 | 38 | 42 | 43 | 45 | 45 | 47 | 47 | 50 | 52 | 57 | 59 | 61 | 67 | 70 | 74 | 79 | 81 | 85 | 89 | 92 | 96 | 101 | 106 | 108 | 113 | 116 | 128 | 133 | 136 | 151 | 155 | 172 | 177 | 181 | 181 | 187 | 194 | 196 | 200 | 201 | 210 | 215 | 220 | 226 | 233 | 237 | 243 | 252 | 264 | 267 | 272 | 272 | 277 | 280 | 288 | 305 | 313 | 317 | 317 | 324 | 327 | 328 | 337 | 352 | 354 | 356 | 358 | 365 | 372 | 377 | 387 | 404 | 409 | 419 | 437 | 446 | 462 | 466 | 483 | 497 | 504 | 513 | 520 | 531 | 540 | 552 | 563 | 570 | 576 | 585 | 586 | 598 | 603 | 611 | 613 | 615 | 616 | 621 | 627 | 629 | 632 | 633 | 642 | 648 | 653 | 658 | 662 | 672 | 673 | 675 | 682 | 692 | 694 | 710 | 712 | 715 | 720 | 728 | 736 | 741 | 749 | 752 | 752 | 759 | 763 | 765 | 770 | 770 | 771 | 772 | 772 | 772 | 779 | 781 | 787 | 789 | 796 | 801 | 807 | 807 | 822 | 825 | 831 | 833 | 846 | 848 | 852 | 868 | 878 | 882 | 883 | 883 | 892 | 894 | 900 | 917 | 917 | 917 | 918 | 923 | 925 | 937 | 940 | 940 | 941 | 948 | 948 | 963 | 966 | 975 | 978 | 978 | 984 | 993 | 1007 | 1010 | 1028 | 1030 | 1030 | 1038 | 1042 | 1052 | 1053 | 1058 | 1059 | 1062 | 1073 | 1077 | 1079 | 1089 | 1092 | 1095 | 1098 | 1107 | 1107 | 1112 | 1113 | 1117 | 1123 | 1128 | 1130 | 1134 | 1137 | 1145 | 1151 | 1157 | 1160 | 1161 | 1167 | 1170 | 1170 | 1171 | 1173 | 1175 | 1178 | 1189 | 1206 | 1214 | 1217 | 1219 | 1223 | 1224 | 1240 | 1245 | 1258 | 1264 | 1269 | 1272 | 1275 | 1292 | 1296 | 1309 | 1318 | 1330 | 1336 | 1336 | 1363 | 1383 | 1390 | 1396 | 1398 | 1406 | 1417 | 1462 | 1492 | 1514 | 1517 | 1528 | 1530 | 1533 | 1575 | 1597 | 1614 | 1634 | 1648 | 1658 | 1663 | 1679 | 1685 | 1696 | 1712 | 1723 | 1729 | 1730 | 1738 | 1760 | 1778 | 1793 | 1805 | 1827 | 1834 | 1882 | 1898 | 1920 | 1931 | 1931 | 1951 | 1956 | 1966 | 1981 | 1989 | 1994 | 2002 | 2008 | 2008 | 2019 | 2024 | 2030 | 2036 | 2040 | 2042 | 2044 | 2055 | 2053 | 2057 | 2061 | 2067 | 2070 | 2074 | 2084 | 2095 | 2099 | 2106 | 2113 | 2115 | 2116 | 2124 | 2129 | 2136 | 2139 | 2138 | 2139 | 2143 | 2147 | 2161 | 2171 | 2175 | 2181 | 2184 | 2195 | 2198 | 2199 | 2202 | 2206 | 2212 | 2212 | 2213 | 2213 | 2216 | 2218 | 2221 | 2224 | 2226 | 2226 | 2227 | 2227 | 2227 | 2228 | 2231 | 2232 | 2232 |
84001007 | US | USA | 840 | 1007 | Bibb | Alabama | US | 32.9964 | -87.1251 | Bibb, Alabama, US | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 7 | 7 | 8 | 9 | 11 | 11 | 13 | 16 | 17 | 18 | 19 | 23 | 23 | 26 | 26 | 30 | 30 | 32 | 32 | 33 | 34 | 37 | 40 | 40 | 40 | 40 | 41 | 41 | 42 | 43 | 43 | 43 | 44 | 44 | 45 | 46 | 46 | 46 | 46 | 47 | 51 | 52 | 52 | 53 | 53 | 54 | 54 | 56 | 59 | 60 | 63 | 68 | 72 | 72 | 72 | 74 | 77 | 78 | 78 | 78 | 78 | 79 | 79 | 81 | 87 | 91 | 95 | 97 | 102 | 106 | 113 | 113 | 116 | 119 | 125 | 125 | 126 | 128 | 134 | 141 | 148 | 161 | 164 | 164 | 167 | 172 | 176 | 181 | 191 | 193 | 196 | 198 | 202 | 204 | 214 | 219 | 226 | 229 | 232 | 237 | 243 | 248 | 255 | 262 | 270 | 277 | 283 | 288 | 290 | 304 | 318 | 324 | 335 | 339 | 345 | 353 | 364 | 369 | 373 | 383 | 390 | 393 | 420 | 424 | 434 | 446 | 450 | 454 | 465 | 469 | 475 | 479 | 481 | 485 | 487 | 501 | 507 | 512 | 515 | 521 | 521 | 522 | 526 | 530 | 532 | 539 | 550 | 553 | 558 | 562 | 564 | 567 | 571 | 576 | 578 | 585 | 586 | 589 | 593 | 594 | 596 | 599 | 600 | 601 | 606 | 607 | 619 | 623 | 624 | 628 | 633 | 637 | 646 | 649 | 650 | 651 | 653 | 660 | 668 | 671 | 675 | 683 | 683 | 688 | 700 | 703 | 715 | 724 | 734 | 736 | 741 | 742 | 759 | 769 | 773 | 783 | 787 | 789 | 799 | 809 | 823 | 825 | 839 | 841 | 849 | 858 | 862 | 867 | 873 | 877 | 883 | 890 | 900 | 907 | 920 | 926 | 934 | 942 | 948 | 948 | 961 | 966 | 973 | 978 | 986 | 993 | 1004 | 1008 | 1011 | 1024 | 1036 | 1136 | 1142 | 1157 | 1162 | 1170 | 1173 | 1179 | 1188 | 1196 | 1204 | 1239 | 1252 | 1270 | 1283 | 1293 | 1299 | 1317 | 1322 | 1359 | 1398 | 1417 | 1441 | 1455 | 1504 | 1520 | 1548 | 1577 | 1601 | 1613 | 1628 | 1660 | 1683 | 1711 | 1725 | 1739 | 1746 | 1762 | 1792 | 1817 | 1834 | 1854 | 1863 | 1882 | 1885 | 1923 | 1944 | 1981 | 2015 | 2038 | 2051 | 2060 | 2090 | 2109 | 2113 | 2130 | 2144 | 2151 | 2162 | 2170 | 2188 | 2198 | 2212 | 2223 | 2223 | 2229 | 2247 | 2261 | 2271 | 2284 | 2284 | 2307 | 2309 | 2319 | 2321 | 2327 | 2331 | 2334 | 2339 | 2346 | 2362 | 2368 | 2377 | 2385 | 2393 | 2395 | 2397 | 2400 | 2399 | 2405 | 2411 | 2414 | 2416 | 2417 | 2432 | 2437 | 2442 | 2445 | 2449 | 2450 | 2450 | 2454 | 2459 | 2461 | 2457 | 2460 | 2465 | 2464 | 2466 | 2469 | 2474 | 2475 | 2479 | 2481 | 2499 | 2508 | 2512 | 2519 | 2521 | 2528 | 2529 | 2529 | 2530 | 2535 | 2534 | 2535 | 2535 | 2536 | 2536 | 2537 | 2542 | 2543 | 2544 | 2545 | 2546 | 2546 |
84001009 | US | USA | 840 | 1009 | Blount | Alabama | US | 33.9821 | -86.5679 | Blount, Alabama, US | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 4 | 6 | 6 | 7 | 7 | 7 | 7 | 9 | 11 | 12 | 13 | 13 | 13 | 13 | 15 | 15 | 15 | 17 | 18 | 19 | 21 | 22 | 22 | 24 | 25 | 27 | 31 | 33 | 35 | 36 | 36 | 38 | 38 | 38 | 39 | 39 | 41 | 42 | 42 | 42 | 42 | 44 | 46 | 47 | 47 | 47 | 48 | 48 | 48 | 48 | 48 | 49 | 49 | 50 | 50 | 50 | 51 | 52 | 52 | 52 | 52 | 54 | 56 | 61 | 63 | 65 | 66 | 66 | 66 | 66 | 67 | 73 | 76 | 78 | 80 | 84 | 92 | 98 | 106 | 114 | 120 | 121 | 125 | 135 | 140 | 144 | 151 | 155 | 162 | 170 | 177 | 186 | 192 | 192 | 200 | 209 | 218 | 221 | 232 | 236 | 240 | 249 | 257 | 270 | 289 | 301 | 316 | 338 | 354 | 368 | 390 | 426 | 445 | 464 | 487 | 510 | 526 | 549 | 582 | 616 | 639 | 654 | 674 | 679 | 701 | 738 | 773 | 799 | 820 | 838 | 841 | 845 | 883 | 917 | 929 | 945 | 957 | 971 | 979 | 994 | 998 | 1004 | 1014 | 1023 | 1060 | 1086 | 1113 | 1133 | 1147 | 1149 | 1160 | 1177 | 1224 | 1239 | 1251 | 1273 | 1301 | 1312 | 1332 | 1336 | 1356 | 1376 | 1392 | 1399 | 1416 | 1418 | 1424 | 1441 | 1453 | 1459 | 1472 | 1483 | 1490 | 1504 | 1515 | 1538 | 1551 | 1564 | 1573 | 1586 | 1593 | 1605 | 1614 | 1619 | 1623 | 1624 | 1626 | 1633 | 1636 | 1644 | 1656 | 1659 | 1664 | 1667 | 1678 | 1686 | 1700 | 1712 | 1720 | 1732 | 1755 | 1765 | 1782 | 1796 | 1822 | 1837 | 1848 | 1863 | 1887 | 1907 | 1923 | 1934 | 1947 | 1958 | 1986 | 2002 | 2027 | 2054 | 2089 | 2109 | 2128 | 2178 | 2204 | 2233 | 2258 | 2290 | 2302 | 2338 | 2378 | 2378 | 2400 | 2429 | 2488 | 2518 | 2549 | 2574 | 2594 | 2648 | 2683 | 2704 | 2735 | 2754 | 2763 | 2822 | 2855 | 2879 | 2888 | 2922 | 2946 | 2997 | 3061 | 3100 | 3158 | 3231 | 3281 | 3299 | 3324 | 3426 | 3496 | 3600 | 3663 | 3744 | 3776 | 3803 | 3881 | 3950 | 4036 | 4118 | 4191 | 4218 | 4234 | 4313 | 4367 | 4405 | 4441 | 4446 | 4465 | 4483 | 4535 | 4584 | 4641 | 4693 | 4729 | 4746 | 4771 | 4849 | 4898 | 4957 | 5018 | 5047 | 5066 | 5080 | 5134 | 5170 | 5219 | 5264 | 5292 | 5304 | 5308 | 5320 | 5376 | 5411 | 5439 | 5462 | 5473 | 5485 | 5517 | 5568 | 5612 | 5655 | 5655 | 5713 | 5720 | 5745 | 5768 | 5842 | 5871 | 5908 | 5915 | 5920 | 5929 | 5937 | 5955 | 5953 | 5957 | 5961 | 5973 | 5987 | 5997 | 6008 | 6021 | 6040 | 6042 | 6043 | 6058 | 6072 | 6086 | 6084 | 6095 | 6097 | 6102 | 6106 | 6229 | 6236 | 6246 | 6252 | 6256 | 6256 | 6255 | 6260 | 6274 | 6282 | 6288 | 6291 | 6353 | 6361 | 6371 | 6376 | 6380 | 6382 | 6383 | 6387 | 6388 | 6402 | 6408 | 6415 | 6420 | 6424 | 6426 | 6443 | 6444 | 6446 | 6455 | 6458 | 6459 | 6460 |
84001011 | US | USA | 840 | 1011 | Bullock | Alabama | US | 32.1003 | -85.7127 | Bullock, Alabama, US | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 6 | 8 | 8 | 8 | 8 | 9 | 9 | 11 | 11 | 11 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 13 | 14 | 14 | 14 | 15 | 17 | 17 | 17 | 20 | 21 | 22 | 26 | 26 | 27 | 27 | 32 | 35 | 39 | 50 | 58 | 64 | 71 | 95 | 103 | 109 | 138 | 167 | 175 | 185 | 201 | 205 | 209 | 211 | 215 | 217 | 219 | 225 | 231 | 237 | 242 | 247 | 252 | 256 | 275 | 300 | 305 | 306 | 310 | 316 | 317 | 324 | 324 | 325 | 327 | 330 | 339 | 340 | 346 | 346 | 354 | 354 | 356 | 358 | 363 | 363 | 363 | 364 | 365 | 366 | 366 | 372 | 373 | 373 | 374 | 376 | 377 | 380 | 383 | 389 | 390 | 392 | 393 | 396 | 401 | 405 | 410 | 411 | 412 | 425 | 427 | 431 | 433 | 439 | 441 | 442 | 445 | 448 | 454 | 458 | 467 | 468 | 470 | 486 | 497 | 497 | 498 | 500 | 500 | 501 | 512 | 530 | 535 | 536 | 539 | 539 | 540 | 540 | 541 | 542 | 544 | 551 | 555 | 556 | 564 | 566 | 567 | 567 | 567 | 569 | 569 | 569 | 569 | 571 | 571 | 572 | 578 | 578 | 579 | 581 | 583 | 583 | 584 | 586 | 590 | 592 | 596 | 597 | 598 | 603 | 605 | 606 | 606 | 608 | 611 | 611 | 611 | 611 | 611 | 614 | 616 | 618 | 622 | 623 | 624 | 625 | 626 | 628 | 628 | 630 | 633 | 633 | 634 | 635 | 636 | 636 | 638 | 647 | 648 | 648 | 649 | 649 | 650 | 651 | 651 | 653 | 653 | 656 | 658 | 660 | 662 | 663 | 664 | 664 | 665 | 665 | 668 | 669 | 673 | 675 | 677 | 677 | 678 | 678 | 680 | 684 | 688 | 689 | 690 | 690 | 691 | 694 | 694 | 696 | 700 | 702 | 701 | 709 | 709 | 711 | 713 | 713 | 714 | 719 | 722 | 722 | 723 | 725 | 728 | 728 | 733 | 737 | 742 | 747 | 752 | 753 | 754 | 760 | 765 | 770 | 777 | 825 | 827 | 830 | 834 | 846 | 859 | 888 | 892 | 900 | 910 | 920 | 925 | 927 | 949 | 950 | 953 | 957 | 967 | 966 | 971 | 981 | 987 | 990 | 991 | 997 | 1011 | 1014 | 1022 | 1033 | 1035 | 1046 | 1058 | 1074 | 1079 | 1075 | 1075 | 1086 | 1089 | 1087 | 1093 | 1107 | 1113 | 1121 | 1128 | 1132 | 1132 | 1131 | 1136 | 1137 | 1139 | 1142 | 1142 | 1145 | 1143 | 1144 | 1147 | 1149 | 1151 | 1153 | 1160 | 1165 | 1163 | 1163 | 1167 | 1169 | 1169 | 1171 | 1172 | 1173 | 1174 | 1177 | 1177 | 1177 | 1177 | 1180 | 1181 | 1183 | 1185 | 1185 | 1193 | 1193 | 1193 | 1194 | 1194 | 1194 | 1194 | 1194 | 1195 | 1197 | 1200 | 1201 | 1202 | 1204 | 1204 | 1206 | 1207 | 1207 | 1207 | 1208 | 1209 | 1209 |
84001013 | US | USA | 840 | 1013 | Butler | Alabama | US | 31.753 | -86.6806 | Butler, Alabama, US | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 3 | 3 | 6 | 7 | 8 | 8 | 11 | 11 | 13 | 14 | 15 | 15 | 15 | 17 | 19 | 21 | 28 | 32 | 34 | 48 | 53 | 55 | 68 | 93 | 104 | 113 | 118 | 128 | 152 | 159 | 175 | 188 | 196 | 223 | 231 | 244 | 254 | 265 | 278 | 289 | 297 | 306 | 315 | 325 | 329 | 338 | 360 | 375 | 387 | 389 | 394 | 403 | 413 | 414 | 418 | 420 | 430 | 441 | 447 | 453 | 462 | 469 | 482 | 498 | 517 | 534 | 542 | 545 | 548 | 560 | 562 | 563 | 567 | 569 | 572 | 574 | 580 | 586 | 593 | 595 | 598 | 599 | 599 | 602 | 614 | 615 | 624 | 624 | 625 | 630 | 632 | 639 | 645 | 646 | 650 | 651 | 655 | 659 | 662 | 668 | 676 | 678 | 685 | 693 | 699 | 705 | 712 | 718 | 724 | 728 | 734 | 740 | 746 | 749 | 756 | 758 | 758 | 761 | 763 | 766 | 766 | 771 | 774 | 775 | 778 | 780 | 786 | 796 | 799 | 803 | 803 | 805 | 809 | 811 | 813 | 815 | 816 | 817 | 824 | 827 | 829 | 845 | 855 | 857 | 865 | 867 | 868 | 872 | 875 | 879 | 881 | 881 | 882 | 883 | 884 | 886 | 888 | 889 | 890 | 892 | 893 | 896 | 897 | 897 | 898 | 898 | 899 | 901 | 903 | 906 | 907 | 908 | 911 | 913 | 915 | 917 | 919 | 920 | 921 | 923 | 926 | 928 | 937 | 948 | 954 | 958 | 964 | 974 | 979 | 985 | 987 | 993 | 996 | 996 | 996 | 999 | 1000 | 1005 | 1009 | 1011 | 1011 | 1014 | 1018 | 1018 | 1021 | 1023 | 1025 | 1028 | 1032 | 1035 | 1043 | 1045 | 1051 | 1053 | 1061 | 1061 | 1062 | 1062 | 1068 | 1075 | 1087 | 1095 | 1099 | 1102 | 1113 | 1120 | 1132 | 1133 | 1137 | 1143 | 1144 | 1153 | 1153 | 1165 | 1173 | 1178 | 1186 | 1188 | 1200 | 1211 | 1225 | 1236 | 1244 | 1257 | 1263 | 1287 | 1289 | 1306 | 1330 | 1340 | 1332 | 1343 | 1368 | 1384 | 1393 | 1399 | 1405 | 1412 | 1423 | 1434 | 1448 | 1446 | 1452 | 1457 | 1482 | 1493 | 1508 | 1522 | 1530 | 1546 | 1554 | 1574 | 1583 | 1598 | 1610 | 1625 | 1632 | 1637 | 1649 | 1651 | 1669 | 1679 | 1684 | 1696 | 1702 | 1707 | 1708 | 1713 | 1724 | 1731 | 1744 | 1748 | 1759 | 1766 | 1788 | 1800 | 1800 | 1812 | 1827 | 1833 | 1838 | 1847 | 1853 | 1863 | 1865 | 1868 | 1872 | 1882 | 1886 | 1892 | 1898 | 1902 | 1905 | 1910 | 1924 | 1930 | 1934 | 1938 | 1940 | 1945 | 1948 | 1951 | 1951 | 1952 | 1956 | 1961 | 1968 | 1975 | 2011 | 2014 | 2017 | 2014 | 2016 | 2017 | 2020 | 2022 | 2035 | 2037 | 2038 | 2041 | 2066 | 2068 | 2069 | 2069 | 2071 | 2072 | 2072 | 2072 | 2073 | 2077 | 2082 | 2087 | 2093 | 2096 | 2097 | 2098 | 2097 | 2103 | 2106 | 2106 | 2106 | 2107 |
84001015 | US | USA | 840 | 1015 | Calhoun | Alabama | US | 33.7748 | -85.8263 | Calhoun, Alabama, US | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 9 | 10 | 11 | 12 | 22 | 23 | 26 | 40 | 51 | 54 | 56 | 56 | 59 | 63 | 64 | 65 | 66 | 68 | 68 | 71 | 78 | 82 | 85 | 87 | 89 | 89 | 90 | 91 | 91 | 94 | 95 | 97 | 97 | 102 | 109 | 109 | 118 | 120 | 126 | 129 | 130 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 139 | 139 | 142 | 142 | 143 | 145 | 145 | 148 | 153 | 157 | 159 | 159 | 160 | 161 | 169 | 172 | 172 | 174 | 176 | 181 | 183 | 184 | 186 | 188 | 190 | 193 | 197 | 201 | 202 | 203 | 206 | 208 | 208 | 209 | 211 | 213 | 214 | 223 | 233 | 236 | 245 | 245 | 261 | 276 | 278 | 288 | 330 | 341 | 363 | 375 | 390 | 412 | 443 | 460 | 496 | 520 | 562 | 580 | 649 | 663 | 706 | 728 | 772 | 813 | 849 | 870 | 893 | 974 | 1025 | 1086 | 1163 | 1206 | 1260 | 1305 | 1412 | 1445 | 1541 | 1570 | 1608 | 1645 | 1704 | 1744 | 1795 | 1821 | 1847 | 1874 | 1902 | 1925 | 1941 | 1980 | 2000 | 2015 | 2061 | 2121 | 2181 | 2211 | 2246 | 2260 | 2285 | 2302 | 2360 | 2380 | 2409 | 2468 | 2500 | 2530 | 2582 | 2606 | 2648 | 2714 | 2786 | 2797 | 2836 | 2840 | 2859 | 2900 | 2922 | 2975 | 3023 | 3040 | 3066 | 3106 | 3156 | 3189 | 3268 | 3289 | 3321 | 3341 | 3353 | 3412 | 3450 | 3466 | 3485 | 3498 | 3516 | 3530 | 3556 | 3597 | 3629 | 3647 | 3672 | 3700 | 3718 | 3736 | 3790 | 3811 | 3829 | 3848 | 3884 | 3911 | 3939 | 3992 | 4053 | 4071 | 4090 | 4115 | 4143 | 4175 | 4213 | 4553 | 4587 | 4602 | 4634 | 4675 | 4757 | 4800 | 4855 | 4883 | 4913 | 4946 | 4996 | 5030 | 5072 | 5146 | 5179 | 5214 | 5246 | 5254 | 5282 | 5345 | 5429 | 5470 | 5608 | 5666 | 5702 | 5764 | 5814 | 5896 | 5924 | 5964 | 5997 | 6049 | 6112 | 6215 | 6240 | 6301 | 6366 | 6430 | 6598 | 6695 | 6809 | 6939 | 7027 | 7096 | 7165 | 7300 | 7392 | 7534 | 7658 | 7760 | 7813 | 7872 | 7966 | 8072 | 8290 | 8459 | 8594 | 8648 | 8684 | 8856 | 8968 | 9071 | 9167 | 9198 | 9232 | 9286 | 9345 | 9428 | 9494 | 9584 | 9692 | 9731 | 9752 | 9975 | 10109 | 10283 | 10372 | 10453 | 10497 | 10537 | 10668 | 10745 | 10863 | 10982 | 11078 | 11122 | 11161 | 11206 | 11292 | 11365 | 11441 | 11496 | 11521 | 11555 | 11626 | 11730 | 11833 | 11918 | 11918 | 12011 | 12062 | 12102 | 12179 | 12253 | 12325 | 12368 | 12402 | 12426 | 12477 | 12498 | 12539 | 12577 | 12629 | 12700 | 12725 | 12756 | 12784 | 12833 | 12860 | 12915 | 12940 | 13017 | 13063 | 13090 | 13175 | 13202 | 13232 | 13275 | 13300 | 13307 | 13755 | 13832 | 13901 | 13961 | 13963 | 13968 | 13977 | 13989 | 14007 | 14034 | 14055 | 14064 | 14105 | 14112 | 14137 | 14148 | 14152 | 14158 | 14162 | 14165 | 14162 | 14186 | 14188 | 14192 | 14197 | 14199 | 14206 | 14216 | 14224 | 14227 | 14233 | 14243 | 14249 | 14251 |
84001017 | US | USA | 840 | 1017 | Chambers | Alabama | US | 32.9136 | -85.3907 | Chambers, Alabama, US | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 6 | 9 | 13 | 15 | 22 | 29 | 39 | 40 | 51 | 75 | 87 | 91 | 94 | 102 | 112 | 145 | 170 | 178 | 189 | 206 | 215 | 219 | 229 | 234 | 239 | 242 | 247 | 257 | 259 | 266 | 273 | 277 | 279 | 281 | 284 | 286 | 288 | 292 | 295 | 296 | 302 | 307 | 309 | 313 | 317 | 320 | 323 | 325 | 327 | 332 | 333 | 334 | 335 | 337 | 337 | 338 | 339 | 342 | 343 | 343 | 343 | 349 | 350 | 353 | 356 | 364 | 367 | 369 | 370 | 373 | 374 | 375 | 379 | 389 | 393 | 398 | 407 | 418 | 434 | 443 | 457 | 474 | 486 | 488 | 491 | 503 | 507 | 515 | 520 | 527 | 533 | 540 | 547 | 558 | 560 | 560 | 581 | 590 | 594 | 609 | 620 | 631 | 634 | 643 | 652 | 658 | 672 | 678 | 690 | 694 | 703 | 713 | 719 | 732 | 743 | 756 | 762 | 767 | 774 | 781 | 789 | 796 | 810 | 820 | 824 | 835 | 844 | 848 | 859 | 862 | 869 | 876 | 882 | 887 | 894 | 900 | 905 | 906 | 909 | 915 | 918 | 919 | 922 | 925 | 927 | 928 | 937 | 943 | 949 | 965 | 969 | 970 | 970 | 973 | 982 | 1012 | 1015 | 1023 | 1024 | 1029 | 1037 | 1040 | 1041 | 1047 | 1053 | 1055 | 1058 | 1058 | 1061 | 1069 | 1079 | 1085 | 1085 | 1087 | 1092 | 1097 | 1097 | 1109 | 1114 | 1121 | 1123 | 1131 | 1135 | 1142 | 1151 | 1154 | 1157 | 1161 | 1164 | 1170 | 1172 | 1175 | 1195 | 1196 | 1199 | 1201 | 1203 | 1212 | 1231 | 1235 | 1235 | 1238 | 1247 | 1251 | 1255 | 1258 | 1261 | 1261 | 1268 | 1298 | 1328 | 1334 | 1341 | 1346 | 1347 | 1349 | 1365 | 1369 | 1379 | 1381 | 1389 | 1392 | 1397 | 1428 | 1449 | 1461 | 1469 | 1483 | 1485 | 1488 | 1506 | 1507 | 1508 | 1514 | 1545 | 1556 | 1570 | 1572 | 1595 | 1620 | 1641 | 1663 | 1669 | 1675 | 1680 | 1714 | 1737 | 1764 | 1765 | 1768 | 1772 | 1779 | 1827 | 1859 | 1875 | 1891 | 1901 | 1906 | 1915 | 1945 | 1961 | 1977 | 1982 | 1997 | 2013 | 2022 | 2040 | 2064 | 2076 | 2090 | 2116 | 2125 | 2133 | 2161 | 2176 | 2191 | 2200 | 2203 | 2214 | 2229 | 2275 | 2310 | 2341 | 2366 | 2386 | 2402 | 2415 | 2474 | 2519 | 2552 | 2592 | 2620 | 2639 | 2651 | 2697 | 2734 | 2757 | 2778 | 2818 | 2827 | 2842 | 2886 | 2931 | 2973 | 3011 | 3034 | 3042 | 3054 | 3085 | 3137 | 3159 | 3174 | 3174 | 3203 | 3210 | 3219 | 3233 | 3239 | 3249 | 3259 | 3263 | 3266 | 3283 | 3291 | 3305 | 3313 | 3318 | 3321 | 3325 | 3336 | 3338 | 3348 | 3358 | 3364 | 3367 | 3367 | 3382 | 3393 | 3392 | 3399 | 3406 | 3410 | 3413 | 3421 | 3423 | 3431 | 3432 | 3432 | 3434 | 3434 | 3435 | 3438 | 3438 | 3439 | 3441 | 3442 | 3457 | 3458 | 3460 | 3464 | 3465 | 3466 | 3466 | 3469 | 3470 | 3471 | 3478 | 3481 | 3484 | 3485 | 3485 | 3487 | 3488 | 3489 | 3489 | 3490 | 3493 | 3493 |
84001019 | US | USA | 840 | 1019 | Cherokee | Alabama | US | 34.1781 | -85.6064 | Cherokee, Alabama, US | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 4 | 5 | 5 | 5 | 5 | 7 | 7 | 7 | 7 | 9 | 9 | 9 | 10 | 11 | 11 | 12 | 12 | 13 | 14 | 14 | 14 | 14 | 14 | 15 | 15 | 16 | 16 | 16 | 16 | 16 | 19 | 19 | 19 | 20 | 20 | 22 | 23 | 23 | 24 | 24 | 24 | 24 | 25 | 26 | 27 | 28 | 30 | 30 | 31 | 32 | 32 | 32 | 33 | 33 | 33 | 34 | 36 | 37 | 38 | 38 | 38 | 38 | 38 | 40 | 42 | 42 | 42 | 43 | 43 | 46 | 48 | 52 | 52 | 52 | 53 | 54 | 57 | 57 | 57 | 57 | 57 | 58 | 62 | 66 | 67 | 69 | 72 | 73 | 76 | 82 | 89 | 89 | 101 | 102 | 106 | 115 | 115 | 116 | 126 | 128 | 135 | 139 | 144 | 149 | 155 | 160 | 171 | 177 | 181 | 183 | 192 | 205 | 207 | 209 | 220 | 221 | 227 | 235 | 238 | 242 | 254 | 262 | 268 | 270 | 281 | 291 | 298 | 301 | 302 | 306 | 311 | 319 | 326 | 333 | 337 | 341 | 350 | 351 | 358 | 362 | 367 | 369 | 374 | 376 | 379 | 387 | 390 | 395 | 402 | 403 | 414 | 419 | 426 | 440 | 447 | 449 | 452 | 452 | 455 | 465 | 471 | 482 | 502 | 504 | 506 | 510 | 513 | 522 | 539 | 549 | 552 | 557 | 567 | 574 | 586 | 592 | 596 | 597 | 601 | 605 | 609 | 616 | 625 | 625 | 628 | 630 | 636 | 640 | 648 | 653 | 657 | 661 | 674 | 677 | 687 | 694 | 705 | 706 | 707 | 714 | 717 | 720 | 725 | 727 | 732 | 736 | 749 | 756 | 759 | 764 | 779 | 782 | 786 | 804 | 819 | 830 | 833 | 837 | 841 | 846 | 857 | 857 | 865 | 870 | 892 | 898 | 908 | 912 | 919 | 935 | 956 | 959 | 979 | 985 | 989 | 996 | 1008 | 1010 | 1015 | 1022 | 1029 | 1034 | 1051 | 1055 | 1067 | 1082 | 1090 | 1093 | 1110 | 1125 | 1134 | 1149 | 1167 | 1187 | 1197 | 1204 | 1213 | 1218 | 1241 | 1265 | 1278 | 1287 | 1294 | 1314 | 1329 | 1343 | 1368 | 1368 | 1369 | 1372 | 1393 | 1403 | 1414 | 1429 | 1435 | 1438 | 1441 | 1454 | 1468 | 1496 | 1517 | 1523 | 1537 | 1545 | 1568 | 1569 | 1583 | 1596 | 1600 | 1603 | 1605 | 1609 | 1619 | 1625 | 1643 | 1651 | 1657 | 1660 | 1674 | 1673 | 1682 | 1688 | 1688 | 1704 | 1707 | 1714 | 1718 | 1723 | 1724 | 1729 | 1730 | 1731 | 1735 | 1738 | 1738 | 1739 | 1742 | 1744 | 1745 | 1750 | 1750 | 1751 | 1751 | 1753 | 1753 | 1753 | 1757 | 1763 | 1764 | 1764 | 1768 | 1770 | 1770 | 1771 | 1777 | 1780 | 1781 | 1781 | 1782 | 1783 | 1784 | 1786 | 1785 | 1787 | 1788 | 1788 | 1791 | 1792 | 1791 | 1792 | 1793 | 1793 | 1794 | 1794 | 1794 | 1797 | 1798 | 1801 | 1804 | 1804 | 1804 | 1806 | 1806 | 1810 | 1811 | 1812 | 1812 | 1812 |
... (3332 rows omitted)
Let's aim to draw a map illustrating the average number of cases per day over the last 7 days in each county.
To do this, we take the number of cases on April 5, subtract from it the number of cases on March 29, and divide the result by 7.
april = covid.select('Combined_Key', 'Lat', 'Long_', '3/29/21', '4/5/21')
april
Combined_Key | Lat | Long_ | 3/29/21 | 4/5/21 |
---|---|---|---|---|
Autauga, Alabama, US | 32.5395 | -86.6441 | 6577 | 6620 |
Baldwin, Alabama, US | 30.7277 | -87.7221 | 20487 | 20542 |
Barbour, Alabama, US | 31.8683 | -85.3871 | 2226 | 2232 |
Bibb, Alabama, US | 32.9964 | -87.1251 | 2536 | 2546 |
Blount, Alabama, US | 33.9821 | -86.5679 | 6426 | 6460 |
Bullock, Alabama, US | 32.1003 | -85.7127 | 1204 | 1209 |
Butler, Alabama, US | 31.753 | -86.6806 | 2097 | 2107 |
Calhoun, Alabama, US | 33.7748 | -85.8263 | 14206 | 14251 |
Chambers, Alabama, US | 32.9136 | -85.3907 | 3485 | 3493 |
Cherokee, Alabama, US | 34.1781 | -85.6064 | 1804 | 1812 |
... (3332 rows omitted)
april = april.with_columns(
'7-day avg', np.round((april.column('4/5/21') - april.column('3/29/21')) / 7)
)
april
Combined_Key | Lat | Long_ | 3/29/21 | 4/5/21 | 7-day avg |
---|---|---|---|---|---|
Autauga, Alabama, US | 32.5395 | -86.6441 | 6577 | 6620 | 6 |
Baldwin, Alabama, US | 30.7277 | -87.7221 | 20487 | 20542 | 8 |
Barbour, Alabama, US | 31.8683 | -85.3871 | 2226 | 2232 | 1 |
Bibb, Alabama, US | 32.9964 | -87.1251 | 2536 | 2546 | 1 |
Blount, Alabama, US | 33.9821 | -86.5679 | 6426 | 6460 | 5 |
Bullock, Alabama, US | 32.1003 | -85.7127 | 1204 | 1209 | 1 |
Butler, Alabama, US | 31.753 | -86.6806 | 2097 | 2107 | 1 |
Calhoun, Alabama, US | 33.7748 | -85.8263 | 14206 | 14251 | 6 |
Chambers, Alabama, US | 32.9136 | -85.3907 | 3485 | 3493 | 1 |
Cherokee, Alabama, US | 34.1781 | -85.6064 | 1804 | 1812 | 1 |
... (3332 rows omitted)
We need to relabel our columns in order to prepare our table for Circle.map_table
.
april_for_map = april.select('Lat', 'Long_', 'Combined_Key', '7-day avg') \
.relabeled(['Combined_Key', '7-day avg'], ['labels', 'color_scale'])
april_for_map
Lat | Long_ | labels | color_scale |
---|---|---|---|
32.5395 | -86.6441 | Autauga, Alabama, US | 6 |
30.7277 | -87.7221 | Baldwin, Alabama, US | 8 |
31.8683 | -85.3871 | Barbour, Alabama, US | 1 |
32.9964 | -87.1251 | Bibb, Alabama, US | 1 |
33.9821 | -86.5679 | Blount, Alabama, US | 5 |
32.1003 | -85.7127 | Bullock, Alabama, US | 1 |
31.753 | -86.6806 | Butler, Alabama, US | 1 |
33.7748 | -85.8263 | Calhoun, Alabama, US | 6 |
32.9136 | -85.3907 | Chambers, Alabama, US | 1 |
34.1781 | -85.6064 | Cherokee, Alabama, US | 1 |
... (3332 rows omitted)
There's something weird – there are a few counties whose 7-day average is negative. This is almost certainly due to some data logging issues; we will need to drop these rows before continuing as they'll mess up our color scale.
april_for_map.sort('color_scale')
Lat | Long_ | labels | color_scale |
---|---|---|---|
0 | 0 | Out of GA, Georgia, US | -68 |
0 | 0 | Unassigned, Oklahoma, US | -34 |
0 | 0 | Unassigned, Arkansas, US | -21 |
0 | 0 | Unassigned, Georgia, US | -15 |
37.0208 | -88.0789 | Lyon, Kentucky, US | -13 |
0 | 0 | Unassigned, New Jersey, US | -10 |
0 | 0 | Out of TN, Tennessee, US | -10 |
31.2535 | -96.9363 | Falls, Texas, US | -6 |
31.8153 | -95.6535 | Anderson, Texas, US | -4 |
30.1188 | -93.8941 | Orange, Texas, US | -4 |
... (3332 rows omitted)
april_for_map = april_for_map.where('color_scale', are.above_or_equal_to(0))
Time to call Circle.map_table
.
Circle.map_table(april_for_map,
area = 50,
fill_opacity = 1,
line_color = None)
We can take things a step further by creating more informative labels.
april
Combined_Key | Lat | Long_ | 3/29/21 | 4/5/21 | 7-day avg |
---|---|---|---|---|---|
Autauga, Alabama, US | 32.5395 | -86.6441 | 6577 | 6620 | 6 |
Baldwin, Alabama, US | 30.7277 | -87.7221 | 20487 | 20542 | 8 |
Barbour, Alabama, US | 31.8683 | -85.3871 | 2226 | 2232 | 1 |
Bibb, Alabama, US | 32.9964 | -87.1251 | 2536 | 2546 | 1 |
Blount, Alabama, US | 33.9821 | -86.5679 | 6426 | 6460 | 5 |
Bullock, Alabama, US | 32.1003 | -85.7127 | 1204 | 1209 | 1 |
Butler, Alabama, US | 31.753 | -86.6806 | 2097 | 2107 | 1 |
Calhoun, Alabama, US | 33.7748 | -85.8263 | 14206 | 14251 | 6 |
Chambers, Alabama, US | 32.9136 | -85.3907 | 3485 | 3493 | 1 |
Cherokee, Alabama, US | 34.1781 | -85.6064 | 1804 | 1812 | 1 |
... (3332 rows omitted)
def make_label(name, avg):
name_no_us = name.replace(', US', '')
s = '<b>' + name_no_us + '</b>' + '<br>'
s += '7-day avg: ' + str(int(avg))
return s
print(make_label('Autauga, Alabama, US', 6))
<b>Autauga, Alabama</b><br>7-day avg: 6
april.apply(make_label, 'Combined_Key', '7-day avg')
array(['<b>Autauga, Alabama</b><br>7-day avg: 6', '<b>Baldwin, Alabama</b><br>7-day avg: 8', '<b>Barbour, Alabama</b><br>7-day avg: 1', ..., '<b>Unassigned, Wyoming</b><br>7-day avg: 0', '<b>Washakie, Wyoming</b><br>7-day avg: 0', '<b>Weston, Wyoming</b><br>7-day avg: 0'], dtype='<U75')
april_for_new_map = april.with_columns(
'labels', april.apply(make_label, 'Combined_Key', '7-day avg')
).select('Lat', 'Long_', 'labels', '7-day avg') \
.relabeled('7-day avg', 'color_scale') \
.where('color_scale', are.above_or_equal_to(0))
april_for_new_map
Lat | Long_ | labels | color_scale |
---|---|---|---|
32.5395 | -86.6441 | Autauga, Alabama 7-day avg: 6 | 6 |
30.7277 | -87.7221 | Baldwin, Alabama 7-day avg: 8 | 8 |
31.8683 | -85.3871 | Barbour, Alabama 7-day avg: 1 | 1 |
32.9964 | -87.1251 | Bibb, Alabama 7-day avg: 1 | 1 |
33.9821 | -86.5679 | Blount, Alabama 7-day avg: 5 | 5 |
32.1003 | -85.7127 | Bullock, Alabama 7-day avg: 1 | 1 |
31.753 | -86.6806 | Butler, Alabama 7-day avg: 1 | 1 |
33.7748 | -85.8263 | Calhoun, Alabama 7-day avg: 6 | 6 |
32.9136 | -85.3907 | Chambers, Alabama 7-day avg: 1 | 1 |
34.1781 | -85.6064 | Cherokee, Alabama 7-day avg: 1 | 1 |
... (3304 rows omitted)
Circle.map_table(april_for_new_map,
area = 50,
fill_opacity = 1,
line_color = None)
Now each circle tells you the county name and the average number of COVID cases over the past 7 days in that county.
Note: The exploration here won't be covered in lecture, and includes programming that is slightly more involved than you'll be responsible for. Nevertheless, you may find it interesting, so take a look!
The dataset has columns for each date; we want rows, because that's what plot
expects.
alameda = covid.where('Admin2', 'Alameda').select(np.arange(11, covid.num_columns))
alameda
1/22/20 | 1/23/20 | 1/24/20 | 1/25/20 | 1/26/20 | 1/27/20 | 1/28/20 | 1/29/20 | 1/30/20 | 1/31/20 | 2/1/20 | 2/2/20 | 2/3/20 | 2/4/20 | 2/5/20 | 2/6/20 | 2/7/20 | 2/8/20 | 2/9/20 | 2/10/20 | 2/11/20 | 2/12/20 | 2/13/20 | 2/14/20 | 2/15/20 | 2/16/20 | 2/17/20 | 2/18/20 | 2/19/20 | 2/20/20 | 2/21/20 | 2/22/20 | 2/23/20 | 2/24/20 | 2/25/20 | 2/26/20 | 2/27/20 | 2/28/20 | 2/29/20 | 3/1/20 | 3/2/20 | 3/3/20 | 3/4/20 | 3/5/20 | 3/6/20 | 3/7/20 | 3/8/20 | 3/9/20 | 3/10/20 | 3/11/20 | 3/12/20 | 3/13/20 | 3/14/20 | 3/15/20 | 3/16/20 | 3/17/20 | 3/18/20 | 3/19/20 | 3/20/20 | 3/21/20 | 3/22/20 | 3/23/20 | 3/24/20 | 3/25/20 | 3/26/20 | 3/27/20 | 3/28/20 | 3/29/20 | 3/30/20 | 3/31/20 | 4/1/20 | 4/2/20 | 4/3/20 | 4/4/20 | 4/5/20 | 4/6/20 | 4/7/20 | 4/8/20 | 4/9/20 | 4/10/20 | 4/11/20 | 4/12/20 | 4/13/20 | 4/14/20 | 4/15/20 | 4/16/20 | 4/17/20 | 4/18/20 | 4/19/20 | 4/20/20 | 4/21/20 | 4/22/20 | 4/23/20 | 4/24/20 | 4/25/20 | 4/26/20 | 4/27/20 | 4/28/20 | 4/29/20 | 4/30/20 | 5/1/20 | 5/2/20 | 5/3/20 | 5/4/20 | 5/5/20 | 5/6/20 | 5/7/20 | 5/8/20 | 5/9/20 | 5/10/20 | 5/11/20 | 5/12/20 | 5/13/20 | 5/14/20 | 5/15/20 | 5/16/20 | 5/17/20 | 5/18/20 | 5/19/20 | 5/20/20 | 5/21/20 | 5/22/20 | 5/23/20 | 5/24/20 | 5/25/20 | 5/26/20 | 5/27/20 | 5/28/20 | 5/29/20 | 5/30/20 | 5/31/20 | 6/1/20 | 6/2/20 | 6/3/20 | 6/4/20 | 6/5/20 | 6/6/20 | 6/7/20 | 6/8/20 | 6/9/20 | 6/10/20 | 6/11/20 | 6/12/20 | 6/13/20 | 6/14/20 | 6/15/20 | 6/16/20 | 6/17/20 | 6/18/20 | 6/19/20 | 6/20/20 | 6/21/20 | 6/22/20 | 6/23/20 | 6/24/20 | 6/25/20 | 6/26/20 | 6/27/20 | 6/28/20 | 6/29/20 | 6/30/20 | 7/1/20 | 7/2/20 | 7/3/20 | 7/4/20 | 7/5/20 | 7/6/20 | 7/7/20 | 7/8/20 | 7/9/20 | 7/10/20 | 7/11/20 | 7/12/20 | 7/13/20 | 7/14/20 | 7/15/20 | 7/16/20 | 7/17/20 | 7/18/20 | 7/19/20 | 7/20/20 | 7/21/20 | 7/22/20 | 7/23/20 | 7/24/20 | 7/25/20 | 7/26/20 | 7/27/20 | 7/28/20 | 7/29/20 | 7/30/20 | 7/31/20 | 8/1/20 | 8/2/20 | 8/3/20 | 8/4/20 | 8/5/20 | 8/6/20 | 8/7/20 | 8/8/20 | 8/9/20 | 8/10/20 | 8/11/20 | 8/12/20 | 8/13/20 | 8/14/20 | 8/15/20 | 8/16/20 | 8/17/20 | 8/18/20 | 8/19/20 | 8/20/20 | 8/21/20 | 8/22/20 | 8/23/20 | 8/24/20 | 8/25/20 | 8/26/20 | 8/27/20 | 8/28/20 | 8/29/20 | 8/30/20 | 8/31/20 | 9/1/20 | 9/2/20 | 9/3/20 | 9/4/20 | 9/5/20 | 9/6/20 | 9/7/20 | 9/8/20 | 9/9/20 | 9/10/20 | 9/11/20 | 9/12/20 | 9/13/20 | 9/14/20 | 9/15/20 | 9/16/20 | 9/17/20 | 9/18/20 | 9/19/20 | 9/20/20 | 9/21/20 | 9/22/20 | 9/23/20 | 9/24/20 | 9/25/20 | 9/26/20 | 9/27/20 | 9/28/20 | 9/29/20 | 9/30/20 | 10/1/20 | 10/2/20 | 10/3/20 | 10/4/20 | 10/5/20 | 10/6/20 | 10/7/20 | 10/8/20 | 10/9/20 | 10/10/20 | 10/11/20 | 10/12/20 | 10/13/20 | 10/14/20 | 10/15/20 | 10/16/20 | 10/17/20 | 10/18/20 | 10/19/20 | 10/20/20 | 10/21/20 | 10/22/20 | 10/23/20 | 10/24/20 | 10/25/20 | 10/26/20 | 10/27/20 | 10/28/20 | 10/29/20 | 10/30/20 | 10/31/20 | 11/1/20 | 11/2/20 | 11/3/20 | 11/4/20 | 11/5/20 | 11/6/20 | 11/7/20 | 11/8/20 | 11/9/20 | 11/10/20 | 11/11/20 | 11/12/20 | 11/13/20 | 11/14/20 | 11/15/20 | 11/16/20 | 11/17/20 | 11/18/20 | 11/19/20 | 11/20/20 | 11/21/20 | 11/22/20 | 11/23/20 | 11/24/20 | 11/25/20 | 11/26/20 | 11/27/20 | 11/28/20 | 11/29/20 | 11/30/20 | 12/1/20 | 12/2/20 | 12/3/20 | 12/4/20 | 12/5/20 | 12/6/20 | 12/7/20 | 12/8/20 | 12/9/20 | 12/10/20 | 12/11/20 | 12/12/20 | 12/13/20 | 12/14/20 | 12/15/20 | 12/16/20 | 12/17/20 | 12/18/20 | 12/19/20 | 12/20/20 | 12/21/20 | 12/22/20 | 12/23/20 | 12/24/20 | 12/25/20 | 12/26/20 | 12/27/20 | 12/28/20 | 12/29/20 | 12/30/20 | 12/31/20 | 1/1/21 | 1/2/21 | 1/3/21 | 1/4/21 | 1/5/21 | 1/6/21 | 1/7/21 | 1/8/21 | 1/9/21 | 1/10/21 | 1/11/21 | 1/12/21 | 1/13/21 | 1/14/21 | 1/15/21 | 1/16/21 | 1/17/21 | 1/18/21 | 1/19/21 | 1/20/21 | 1/21/21 | 1/22/21 | 1/23/21 | 1/24/21 | 1/25/21 | 1/26/21 | 1/27/21 | 1/28/21 | 1/29/21 | 1/30/21 | 1/31/21 | 2/1/21 | 2/2/21 | 2/3/21 | 2/4/21 | 2/5/21 | 2/6/21 | 2/7/21 | 2/8/21 | 2/9/21 | 2/10/21 | 2/11/21 | 2/12/21 | 2/13/21 | 2/14/21 | 2/15/21 | 2/16/21 | 2/17/21 | 2/18/21 | 2/19/21 | 2/20/21 | 2/21/21 | 2/22/21 | 2/23/21 | 2/24/21 | 2/25/21 | 2/26/21 | 2/27/21 | 2/28/21 | 3/1/21 | 3/2/21 | 3/3/21 | 3/4/21 | 3/5/21 | 3/6/21 | 3/7/21 | 3/8/21 | 3/9/21 | 3/10/21 | 3/11/21 | 3/12/21 | 3/13/21 | 3/14/21 | 3/15/21 | 3/16/21 | 3/17/21 | 3/18/21 | 3/19/21 | 3/20/21 | 3/21/21 | 3/22/21 | 3/23/21 | 3/24/21 | 3/25/21 | 3/26/21 | 3/27/21 | 3/28/21 | 3/29/21 | 3/30/21 | 3/31/21 | 4/1/21 | 4/2/21 | 4/3/21 | 4/4/21 | 4/5/21 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 5 | 5 | 7 | 11 | 11 | 18 | 27 | 30 | 38 | 48 | 68 | 71 | 118 | 135 | 135 | 178 | 220 | 220 | 270 | 283 | 313 | 313 | 359 | 443 | 443 | 566 | 588 | 634 | 674 | 674 | 766 | 806 | 845 | 888 | 888 | 964 | 1007 | 1063 | 1114 | 1164 | 1193 | 1241 | 1242 | 1352 | 1403 | 1439 | 1470 | 1500 | 1533 | 1568 | 1603 | 1636 | 1706 | 1749 | 1776 | 1809 | 1863 | 1917 | 1961 | 2023 | 2064 | 2101 | 2133 | 2178 | 2234 | 2367 | 2351 | 2392 | 2457 | 2522 | 2560 | 2609 | 2708 | 2760 | 2847 | 2874 | 2986 | 3049 | 3097 | 3195 | 3289 | 3390 | 3470 | 3515 | 3548 | 3641 | 3725 | 3805 | 3805 | 3945 | 3985 | 4033 | 4232 | 4216 | 4217 | 4320 | 4373 | 4481 | 4533 | 4638 | 4702 | 4924 | 4924 | 5007 | 5267 | 5275 | 5382 | 5493 | 5493 | 5670 | 5762 | 5964 | 6156 | 6384 | 6472 | 6556 | 6855 | 6855 | 6925 | 7245 | 7407 | 7485 | 7725 | 7731 | 7976 | 8321 | 8478 | 8627 | 8858 | 9110 | 9237 | 9256 | 9383 | 9643 | 9869 | 10214 | 10330 | 10330 | 10438 | 10633 | 10773 | 11131 | 11139 | 11484 | 11524 | 11524 | 11909 | 12136 | 12884 | 12884 | 13213 | 13213 | 13631 | 13631 | 14112 | 14548 | 14558 | 14558 | 14973 | 15123 | 15437 | 15836 | 16184 | 16469 | 16693 | 16723 | 16786 | 17275 | 17385 | 17621 | 17847 | 17847 | 18040 | 18187 | 18445 | 18695 | 18852 | 18977 | 19131 | 19131 | 19350 | 19496 | 19596 | 19710 | 19819 | 19837 | 19991 | 20022 | 20097 | 20097 | 20162 | 20364 | 20494 | 20558 | 20641 | 20748 | 20839 | 20951 | 21028 | 21136 | 21189 | 21240 | 21323 | 21383 | 21458 | 21508 | 21621 | 21708 | 21746 | 21809 | 21845 | 21938 | 21942 | 22072 | 22149 | 22216 | 22279 | 22325 | 22370 | 22408 | 22459 | 22636 | 22738 | 22807 | 22932 | 23001 | 23133 | 23215 | 23312 | 23391 | 23471 | 23576 | 23636 | 23775 | 23876 | 23994 | 24095 | 24162 | 24233 | 24370 | 24418 | 24664 | 24851 | 25001 | 25110 | 25249 | 25400 | 25599 | 25760 | 25872 | 26047 | 26460 | 26655 | 26927 | 27223 | 27435 | 27485 | 27622 | 27857 | 28225 | 28378 | 28857 | 29116 | 29476 | 29918 | 29972 | 30330 | 30980 | 31204 | 31871 | 32781 | 33477 | 33887 | 34373 | 35047 | 35686 | 36281 | 37027 | 38218 | 39252 | 40026 | 40751 | 41548 | 42196 | 43109 | 44004 | 44756 | 45751 | 46753 | 47527 | 48365 | 49084 | 49796 | 50405 | 50946 | 51590 | 52475 | 53518 | 54518 | 55073 | 55899 | 56432 | 57081 | 57921 | 59172 | 60125 | 61111 | 62046 | 62943 | 63866 | 64760 | 65679 | 68016 | 67375 | 67952 | 68649 | 69107 | 69554 | 69693 | 70334 | 70823 | 71298 | 72024 | 72597 | 73115 | 73542 | 73771 | 74087 | 74661 | 74959 | 75175 | 78224 | 75737 | 76170 | 76648 | 77109 | 77216 | 77632 | 77926 | 78285 | 78356 | 78714 | 78883 | 79016 | 79092 | 79297 | 79471 | 79539 | 79649 | 79796 | 79948 | 80088 | 80279 | 80496 | 80668 | 80777 | 80873 | 80950 | 81086 | 81168 | 81255 | 81345 | 81433 | 81573 | 81658 | 81747 | 81866 | 81969 | 82034 | 82116 | 82168 | 82258 | 82368 | 82460 | 82540 | 82593 | 82680 | 82747 | 82818 | 82871 | 82945 | 83043 | 83169 | 83243 | 83338 | 83395 | 83475 | 83574 | 83776 | 83861 | 83951 |
That's not a problem:
alameda_rotated = Table().with_columns(
'Date', alameda.labels,
'Cases', alameda.row(0)
)
alameda_rotated
Date | Cases |
---|---|
1/22/20 | 0 |
1/23/20 | 0 |
1/24/20 | 0 |
1/25/20 | 0 |
1/26/20 | 0 |
1/27/20 | 0 |
1/28/20 | 0 |
1/29/20 | 0 |
1/30/20 | 0 |
1/31/20 | 0 |
... (430 rows omitted)
What is a problem is that the date is not in a format that datascience
recognizes as being a number. There's a solution; run the following cell to implement it.
from datetime import datetime
def convert_date(date):
return datetime.strptime(date, '%m/%d/%y')
alameda_rotated = alameda_rotated.with_columns(
'Date', alameda_rotated.apply(convert_date, 'Date')
)
alameda_rotated
Date | Cases |
---|---|
2020-01-22 00:00:00 | 0 |
2020-01-23 00:00:00 | 0 |
2020-01-24 00:00:00 | 0 |
2020-01-25 00:00:00 | 0 |
2020-01-26 00:00:00 | 0 |
2020-01-27 00:00:00 | 0 |
2020-01-28 00:00:00 | 0 |
2020-01-29 00:00:00 | 0 |
2020-01-30 00:00:00 | 0 |
2020-01-31 00:00:00 | 0 |
... (430 rows omitted)
Great, now run the following cell to draw the line plot:
alameda_rotated.plot('Date',
title = 'Total Number of COVID-19 Cases in Alameda County')
Awesome. But what if we want the number of new cases per day? We can compute that too, using np.diff
. np.diff
subtracts consecutive elements in an array. (Notice that when we call np.diff
on an array of length n
, the result is an array of length n-1
.)
np.diff(np.array([5, 4, 9, 1, 8]))
array([-1, 5, -8, 7])
We can use it on the 'Cases'
column of alameda_rotated
.
alameda_rotated = alameda_rotated.with_columns(
'New Cases', np.append(0, np.diff(alameda_rotated.column('Cases')))
)
alameda_rotated
Date | Cases | New Cases |
---|---|---|
2020-01-22 00:00:00 | 0 | 0 |
2020-01-23 00:00:00 | 0 | 0 |
2020-01-24 00:00:00 | 0 | 0 |
2020-01-25 00:00:00 | 0 | 0 |
2020-01-26 00:00:00 | 0 | 0 |
2020-01-27 00:00:00 | 0 | 0 |
2020-01-28 00:00:00 | 0 | 0 |
2020-01-29 00:00:00 | 0 | 0 |
2020-01-30 00:00:00 | 0 | 0 |
2020-01-31 00:00:00 | 0 | 0 |
... (430 rows omitted)
alameda_rotated.plot('Date', 'New Cases',
title = 'Number of New COVID-19 Cases in Alameda County Per Day')
Hmm – there are a few jumps that don't quite seem right. What do you think happened? 🤔
(Hint: hover over the values for February 5, February 6, and February 7. What happens when you add the values for February 5 and February 6?)