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Hypothesis Testing (Again)



 1.  State null and alternative hypotheses  
 2.  Define and compute a test statistic to help choose between 

hypotheses 
 3. The probability distribution of the test statistic  
 1. What the test statistic might be if the null hypothesis were true 
 2. Approximate the probability distribution by an empirical distribution 
 4. Conclusion: Is the observed statistic consistent with the null 

distribution?

Hypothesis Testing
Null Hypothesis (H0): Observations are due to random chance

Alternative Hypothesis (H1): Something other than chance 
has influenced the observations



Let’s say I flipped a coin (that I thought was fair) 
100 times, and saw 65 heads and 35 tails. 

Suppose I wanted to test whether or not the 
coin was actually fair.

Putting it All Together

Null Hypothesis: The coin is fair, and any results are due to random 
chance. 

Alternative Hypothesis: There is something other than random 
chance influencing outcomes – this coin is biased towards 

heads.



Putting it All Together

coin = [“H”, “T”] 
outcomes = make_array() 
for i in np.arange(10000): 
flips = np.random.choice(coin, 100) 
outcomes = np.append(outcomes, np.count_nonzero(flips == “H”)) 

p_value = np.count_nonzero(outcomes >= 65) / 10000

The value of p_value after running the above code will 
be the empirical probability of seeing 65 or more heads 

in 100 flips assuming the null hypothesis is true 
(assuming that the coin is fair).



Putting it All Together

If you run the previous code yourself, you’ll see that 
p_value is usually some extremely small decimal 

value (~ 0.002). This means the chances of seeing 65 
heads in 100 flips with a fair coin is under 0.2%, 

meaning that it is extremely unlikely that the coin is fair. 

Since 0.2% is lower than any reasonable p-value cutoff (1% 
or 5%), we’d reject the null hypothesis in this case. This 
means we don’t believe the coin is actually fair, and that it 

is biased towards heads.



Percentiles



Percentiles

Given some set of values, percentiles help us describe 
how large a value is with respect to the rest of the set.

If a value is at the p-th percentile (often denoted “p%ile”), 
this means that it is the smallest value at least as large 

as p% of the values.

eg. 45th percentile: Smallest value at least as large as 45% of the values



Finding Percentiles with Math

The element in the list at spot k (counting starting at 1) is the p-th 
percentile. If k is not an integer, round it up to the nearest integer.

To find the p-th percentile of a list of n numbers:

k = (p / 100) * n

Note that this means that all percentiles must actually be elements in the list, unlike some other 
definitions of percentile. (eg. If we have a list with an even number of elements, its 50th percentile 

is always the left-middle element, not the mean of the left and right middles).



Finding Percentiles with Code

from datascience import * 
numbers = make_array(10, 30, 40, 70, 90) 
per_25 = percentile(25, numbers) 
per_80 = percentile(80, numbers)

The percentile function takes in two arguments: a percentile value 
and a list. It returns the element of the list that is at that percentile.



Question: What is another name for the 50th percentile?
The median.

25th percentile: “First quartile” 
50th percentile: “Second quartile” 

75th percentile: “Third quartile”

Interquartile range: 75th percentile value - 25th percentile value



Confidence Intervals



Bootstrapping and Confidence Intervals

When we bootstrap a sample some number of times, we 
yield estimates for a parameter of the population that 

the sample came from.

For example, if we want to estimate the median height of all 
Berkeley undergrads, we can easily find a sample. However, the 
median of the sample isn’t a good estimate of the true median, 

so we “sample from the sample” (bootstrap) several times.



Bootstrapping and Confidence Intervals

Now that we have some number (eg. 5000) of estimates 
for the median, we need some way of figuring out what 

the population median is.

We look at the “inner 95%” of these new resampled 
medians, and call this a 95% confidence interval.

n% confidence means that “by using this estimation 
process, this interval will contain the parameter 

about n% of the time”.



Finding Confidence Intervals with Code

resampled_medians = [. . . . . .] 
lower = percentile(2.5, numbers) 
upper = percentile(97.5, numbers) 
#95% confidence interval is from lower to upper

A 95% confidence interval is the inner 95% of values. To find this 
interval, we take everything from the 2.5%ile to the 97.5%ile. By 
doing this, we’ve cut off the largest and smallest 2.5% of values.


