
Week 6 – Table Aggregation, Conditionals, Iteration 
and Sampling, Probability

Slides by Suraj Rampure
Fall 2017



Administrative

Our midterm is next Friday during lecture! This weekend, 
several review materials will be posted. They will all be found 
at http://data8.org/fa17/resources.html. 

Next week’s lab will be a midterm review session. There 
won’t be checkoffs, but you should still attend. Send me a 
quick email at suraj.rampure@berkeley.edu telling me 
what you want me to cover!

Project 1 is due Thursday. You shouldn’t work on it during lab 
until you’re finished the worksheet and lab notebook, though.

http://data8.org/fa17/resources.html
mailto:suraj.rampure@berkeley.edu


group and pivot



Group

<table name>.group(<column name(s)>, <function>)

To group, we use the above syntax. As per usual, our table names are variables and 
column names are strings (or integer indexes). We can include either a single string, or 
an array of strings, depending on the number of columns we want to group by. The 
function argument is optional – if you don’t include it, the default function is count.

When we group a table, we create a new table with a summary of 
the values in the original table.

optional



Group

users: Table

Result of calling 
users.group(“manufacturer”)

When we group a table, we create a new table with a summary of 
the values in the original table.



Result of calling 
users.group(“manufacturer”)

Result of calling 
users.group(“manufacturer”, np.mean)

Result of calling 
users.group([“manufacturer”, “model”])

Notice that there are more rows in this table than in 
the other two – this is because instead of having one 
row for each unique “manufacturer” value, there 

is one row for each unique combination of 
“manufacturer” and “model” value.



Pivot

<table name>.pivot(<column name>, <column name>)

• First argument: Name of column that will make up the columns of the new table 

• Second argument: Name of the column that will make up the rows of the new table 

• Third argument (optional): Name of column whose values will make up the new table 

• Fourth argument (optional): Function used for aggregation (mean, sum, etc.)

When we pivot a table, we restructure the tables and columns. We 
can either use 2 or 4 arguments, as outlined below.

<table name>.pivot(<column name>, <column name>, <column name>, <function>)

or



Result of calling users.pivot(“carrier”, “manufacturer”)

Result of calling 
users.pivot(“manufacturer”, “carrier”, “monthly_payment”, np.mean)



Conditionals



Booleans



Booleans

A boolean is a variable with two possible values – True and False.

my_number = 5 
boolin = my_number >= 7 
boolin

We can assign variables based on the value of an expression that evaluates to a boolean:

False

flag = False ‘hello’ <= ‘hey’ True

Fun fact: True is equivalent to 1 and False is equivalent to 0. Try running 5*True-False: what happens?



Conditionals

Conditional statements allow us to control what code is run by specifying certain 
conditions that must be True.

if <condition 1>: 
<output 1> 

elif <condition 2>: 
<output 2> 

. 

. 

. 
else: 
<output n>

Python evaluates the output of the first condition in this sequence that is True.



Conditionals

Conditional statements allow us to control what code is run by specifying certain 
conditions that must be True.

grade = 78 
if grade >= 95: 
print(“A+”) 

elif 90 <= grade <= 94: 
print(“A”) 

elif 80 <= grade <= 89: 
print(“B”) 

elif 70 <= grade <= 79: 
print(“C”) 

else: 
print(“D or F”)

Python evaluates the output of the first condition in this sequence that is True.

“C”



Iterations and Sampling



Iteration

For loops allow us to repeat code several times. The most common 
use case for this in Data 8 is for sampling.

We repeat the code underneath this line 100 times: once for each value of i in [0, 
1, 2, 3, 4, …, 98, 99]. We don’t necessarily need to use the value of i in our 
code – see the following slide.

total = 0  
for i in np.arange(100): 
total += i

4950



Iteration
This is a classic sampling simulation. Here, we’ve modeled a fair coin with an array of two elements – 
“H” and “T.” By calling np.random.choice(coin), we uniformly at random select one element 
from this array. We do this 1000 times and count the number of times we got heads, and divide by 1000, 
to get the proportion of heads.

It’s okay if this doesn’t make a ton of sense right now – you’ll get a lot of practice with this 
shortly.

coin = [“H”, “T”] 
outcomes = [] 
for i in np.arange(1000): 
flip = np.random.choice(coin) 
outcomes = np.append(outcomes, flip) 

p = np.count_nonzero(outcomes == “H”)/1000

0.458



Probability



Probability
For the purposes of this class, there are only three things you need to 
remember with regards to probability. Each question you see will use some 
combination of these rules in a different way.

Sum of 1: Given some event, the sum of the probabilities of all possible 
outcomes is 1.1
Addition Rule: If two events are disjoint, meaning that the probability of 
them both occurring is 0, then we add their probabilities to find the 
probability that either one happens.+
Multiplication Rule: If two events are independent, meaning that one 
doesn’t affect the other, then we multiply their probabilities to find the 
probability that they both happen.*



Probability
Sample Problem: Suppose we flip a coin three times in a row. What is the 
probability that we do not get three heads in a row (i.e. something other than 
HHH)?

P(HHH) + P(not HHH) = 1 

P(not HHH) = 1 - P(HHH) 

P(HHH) = (1/2) * (1/2) * (1/2) = (1/2)^3 = 1/8 

Therefore, P(not HHH) = 1 - 1/8 = 7/8


