
Week 3 – Data Visualization, Tables
Slides by Suraj Rampure

Data Visualization

Example: Global Temperature

Is global warming #fakenews?

110 ºF

-10 ºF

Example: Global Temperature

You can make data say whatever you want it to.

59 ºF

55 ºF

Try It Yourself – Party Affiliations

Party Affiliations % That Agreed With Court
Decision

Democrats 62

Republicans 54

Independents 54

Can you find a way to plot this data in order to make it appear as if many
more Democrats supported the ruling than Republicans or Independents?

%
 o

f p
ar

ty
 vo

te
rs

53

54

55

56

57

58

59

60

61

62

Independents Republicans Democrats

Try It Yourself – Party Affiliations

Scale is everything!

Try It Yourself – DogeCoin

Can you find a way to make it look like a great time
to invest in DogeCoin?

=

Try It Yourself – DogeCoin

Some of the data may be excluded. Watch out!

Tables

Tables
Tables are a type of two-dimensional dataset, where columns represent different
attributes. They belong to the datascience package.

cars: Table

german_brands = make_array("Mercedes",
"BMW", "Audi", "Porsche", “Volkswagen")

average_costs = make_array(55121, 50324,
53331, 65567, 35120)

cars = Table().with_columns(
 "company", german_brands,
 "average cost", average_costs)

When creating a table, we call
with_columns and alternate between
column names and data.

Tables

Each column is an array – this makes sense,
since columns can only have one kind of
value (think of Excel).

cars: Table

german_brands = make_array("Mercedes",
"BMW", "Audi", "Porsche", “Volkswagen")

average_costs = make_array(55121, 50324,
53331, 65567, 35120)

cars = Table().with_columns(
 "company", german_brands,
 "average cost", average_costs)

cars.column(“company”) or cars.column(0)

Tables

Each column is an array – this makes sense,
since columns can only have one kind of
value (think of Excel).

cars: Table

german_brands = make_array("Mercedes",
"BMW", "Audi", "Porsche", “Volkswagen")

average_costs = make_array(55121, 50324,
53331, 65567, 35120)

cars = Table().with_columns(
 "company", german_brands,
 "average cost", average_costs)

cars.column(“average cost”) or cars.column(1)

Tables
cars: Table

german_brands = make_array("Mercedes",
"BMW", "Audi", "Porsche", “Volkswagen")

average_costs = make_array(55121, 50324,
53331, 65567, 35120)

cars = Table().with_columns(
 "company", german_brands,
 "average cost", average_costs)

What if we want to add a new row?

Lists

stuff = [3, “hello”, Table(), 15.44, “this is weird”]

A list is a collection of ordered data, similar to an array.
The main difference is that lists don’t need to contain

data of all of the same type.

Tables

cars: Table

german_brands = make_array("Mercedes",
"BMW", "Audi", "Porsche", “Volkswagen")

average_costs = make_array(55121, 50324,
53331, 65567, 35120)

cars = Table().with_columns(
 "company", german_brands,
 "average cost", average_costs)

new_brand = [“Bugatti”, 1342331]
cars = cars.with_row(new_brand)

with_row and with_rows
are our friends.

If new_brand had more than two
elements, an error would occur.

DEMO

