
Week 2 – Causality, Expressions, Arrays
Slides by Suraj Rampure

Causality
What is a treatment?
A treatment is the factor of interest. For example, if wanted to
study the effects of coffee on lung cancer, coffee would be the
treatment.

What is an outcome?
An outcome is what the effect you believe your treatment
causes. Following the same example, lung cancer would be
the outcome.

Any relationship between a treatment and outcome is called an association.

Causality
What does causation mean?
If and only if the treatment causes the outcome to occur, we say
the association is causal (not casual). While there used to be an
association (or correlation) between drinking coffee and lung
cancer, this association wasn’t causal.

Why does this matter so much? Let’s look at some examples.

Source: http://www.tylervigen.com/spurious-correlations

Source: http://www.tylervigen.com/spurious-correlations

Clearly, no one of these causes the other – these relationships are not causal.

Causality

Why aren’t all associations causations?
What makes causation so special?

Confounding factors are things we neither observed nor
accounted for in the relationship between our treatment and
control.

It turns out that in earlier times, people who drank a lot of coffee
tended to smoke a lot, which we know causes lung cancer. This
confounding factor lead to a lot of people assuming that coffee
causes the lung cancer, but clearly, that wasn’t true.

Causality
How can we establish causation?

Without randomization, you can’t prove causality, no matter how much
you believe a causal relationship exists.

Randomized control trials (RCTs) exist exactly for this purpose.

- Randomly split population into a treatment and control group (not
necessarily of same size), but don’t tell who is who

- Give the treatment to the treatment group, and give a placebo to the
control group (this is important!)

If you can’t run an RCT, and are simply working with data that you
observed, you are performing an observational study.

Causality
Sample Problem
You want to study whether reading news affects whether Data 8 students vote. Students are
randomly assigned to respond to either survey (a) or survey (b) below.

a) Please read the New York Times for the next 20 minutes and then answer the following questions.
 • Do you read a newspaper at least 5 times a week?
 • Did you vote in the last presidential election? 

b) Please answer the following questions.
 • Do you read a newspaper at least 5 times a week?
 • Did you vote in the last presidential election? 

Can we answer:
 1. Is reading the newspaper regularly associated with voting?
 2. Is reading the Times for 20 minutes associated with voting?
 3. Is reading the Times for 20 minutes associated with reading news regularly?
 4. Does reading the newspaper regularly cause people to vote more or less often?
 5. What causal relationship can we establish?

Source: https://i2.wp.com/freshspectrum.com/wp-content/uploads/2015/06/No-control-group.jpg?resize=1024%2C768

http://www.surajrampure.com/resources/data8/ch2-causation.pdf
Read more:

Expressions – Lab 2 Tips
Tip 1: Some function calls don’t change the objects they’re called on.

Even though we called .replace on greeting, .replace doesn’t change the value of greeting, it just creates a new
string. We need to assign some variable, cowboy_greeting for example, to this new string if we want to keep its value.
Instead of cowboy_greeting, we very well could’ve used the name greeting again.

greeting = “hello”
greeting.replace(“ello”, “owdy”)
greeting

input

greeting = “hello”
cowboy_greeting = greeting.replace(“ello”, “owdy”)
cowboy_greeting

input

‘hello’

output

‘howdy’

output

Expressions – Lab 2 Tips
Tip 2: Not all functions require an argument. Arguments, or parameters, are
what we pass into functions – we do this by placing arguments in parentheses ().

np.random.random() returns a random real number between 0 and 1

“MAkE THis aLL uppER caSE”.upper()

input

import numpy as np
np.random.random()

input

“MAKE THIS ALL UPPER CASE”

output

0.752428603838495

output

Expressions – Lab 2 Tips
Tip 3: Strings and numbers don’t commute!

23 + “23”

input

23 + int(“23”)

input

TypeError: unsupported operand type(s) for +: ‘int’
and ‘str’

output

46

output

“45” + “15”

input

‘4515’

output

int(5.491241)

input

5

output

int(“341”)

input

341

output

int(“365.25”)

input

ValueError

output

int(x) converts x into an integer, only if it makes sense to

str(np.pi)

input

‘3.141592653589793’

output

str(x) converts x into a string

Usage of int(x) and some other useful tools:

len(“wagner”)

input

6

output

len(x) finds the length of x (could be a string, or even an array)

max(5.12, int(“13”), -44)

input

 13

output

max(x1, x2, …) returns the largest of the parameters it is passed

Expressions – Lab 2 Tips
Tip 4: Packages are like toolboxes with pre-defined classes,
functions and values.

import numpy
new_array = numpy.arange(0, 10, 2)

numpy

numpy.arange(start, stop, step)

numpy.pi

numpy.sin(x) numpy.array(arr)

numpy.array(arr)

datascience

datascience.Table

datascience.Table.with_columns(*args)

datascience.make_array(*args)

import numpy as np
new_array = np.arange(0, 10, 2)

import datascience
states = datascience.Table.read_csv(“usa.csv”)

from datascience import *
states = Table.read_csv(“usa.csv”)

Expressions – Lab 2 Tips
Tip 4: Packages are like toolboxes with pre-defined classes,
functions and values.

If you import a package with no other
details, you need to mention that
package’s name every time you use its
features.

You can also specify which specific tools
you want from a package. If you import *,
this gives you all tools in a package, and you
don’t need to mention the package’s name.

You can also rename a package before
importing it. There are good reasons
for doing this, instead of importing *.

import numpy
new_array = numpy.arange(0, 10, 2)

import numpy as np
new_array = np.arange(0, 10, 2)

import datascience
states = datascience.Table.read_csv(“usa.csv”)

from datascience import *
states = Table.read_csv(“usa.csv”)

Expressions – Lab 2 Tips
Tip 5: Arrays are collections of values of all the same type (all
strings, all floats, all tables, etc.)

vals1 = make_array(3, 4, -4, -3, 12, 19, 0, -4)
np.sum(vals1) # 27
vals1.item(3) # -3
vals1 + 5 # [8, 9, 1, 2, 17, 24, 5, 1]
np.sin

 3 4 -4 -3 12 19 0 -4

vals1: array(int)

Remember, in Python (and most programming languages) we start counting
at 0, not 1. The first element in an array is at spot 0, the second is at spot 1, etc.

Expressions – Lab 2 Tips
Tip 5: Arrays are collections of values of all the same type (all
strings, all floats, all tables, etc.)

vals1 = make_array(3, 4, -4, -3, 12, 19, 0, -4])
vals2 = make_array([12, 3, 0, 0, 3, 9, -6, 11])
vals3 = vals1 + vals2

 3 4 -4 -3 12 19 0 -4

vals1: array(int)

 12 3 0 0 3 9 -6 11

vals2: array(int)

 15 7 -4 -3 15 28 -6 7

vals3: array(int)

You can even perform operations between two arrays. In these cases, Python
performs the operations element-wise.

Expressions – Lab 2 Tips
Tip 5: Arrays are collections of values of all the same type (all
strings, all floats, all tables, etc.)

 5 8 11 14 17 20 23 26

vals1: array(int)

np.arange(start, stop, step) takes three arguments. It creates a new array with
every step-th value starting from start and ending before end. In the above example,
passing in the arguments (5, 29, 3) created an array with every 3rd integer starting from 5 and
ending before 29. If you don’t specify the third element, Python uses the default step value of 1.

np.arange(5, 29, 3)

Expressions – Lab 2 Tips
Tip 5: Arrays are collections of values of all the same type (all
strings, all floats, all tables, etc.)

Source: https://www.inferentialthinking.com/chapters/06/1/
visualizing-categorical-distributions.html

Each of the columns of a
Table is an array as well!

movies.column(0) # [“Star Wars: The Force Awakens”, “Avatar”, ..]
movies.column(“Year”) # [2015, 2009, 1997, ..]

movies: Table

