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Administrative Notes

Project 2 is due tonight. Please don't work on it during lab until you're
finished the actual lab assignment; you're only doing yourself a disservice.

My explanation of TVD last week was meh. | wrote http://
surajrampure.com/resources/data8/tvd-walkthrough.html to help. You should
definitely check this out and ask me if you have any questions.

The Problem

This is how the problem was worded in the discussion worksheet.

As a student fed up with wait times at office hours, you scout out the number of people in office hours from 11-12,
12-1, and 1-2, with the hope of figuring out which has the fewest number of people. You see the following number of
students in B6 Evans:

OH Time Number of Students
11-12 250
12-1 300

1-2 200

You see that 1-2 has the fewest number of people and wonder if that's the best time to come. Being a cunning Data
8 student, you wonder whether or not these differences might just be due to chance.

We will now go over how to use the concept of total variation distance to run a hypothesis test on this
situation. \




The Bootstrap




boot-strap
/'boot strap/ €

1. aloop at the back of a boot, used to pull it on.

2. COMPUTING

a technique of loading a program into a computer by means of a few initial instructions that
enable the introduction of the rest of the program from an input device.

verb

1. get (oneself or something) into or out of a situation using existing resources.
"the company is bootstrapping itself out of a marred financial past”

2. COMPUTING
fuller form of boot’ (sense 3 of the verb).

adjective

1. (of a person or project) using one's own resources rather than external help.
"a bootstrap capitalist's trip up the entrepreneurial ladder”




The Bootstrap

Wh at’) Bootstrapping is a sampling technique that generates new
) samples by resampling from the original sample.

Why? If you're looking to estimate a population parameter, but
are unable to sample more.

Wh o To bootstrap, your sample must be drawn randomly and large
en: enough that it represents the population it comes from.

Treat the original sample as if it were the population. Draw from the
HOW? “population” at random with replacement, the same number of times
as the original sample size.



Why do we have to sample with replacement
when bootstrapping?

If we were to sample without replacement, we'd get back the
original sample each time. By sampling with replacement, we'll get
different combinations of elements from the original sample.



len(pop) = 30000

Actual heights of all
~30,000 people at
Berkeley (population —
unknown)

ampling in real life
len(original_sample) = 1000 x Sampling

Heights of 1000 randomly
sampled people at Berkeley
("original sample”)

75, 58, 57, 63, 62, 63, 65, 68, 69,
76, 59, 71, 74, 74, 75, 50, 72, 67,

Sampling with
simulations/code

len(bootstrap-1) = 1000 len(bootstrap-2) = 1000 len(bootstrap-5000) = 1000

75, 58, 57, 63, 62, 75, 75, 75, 75, 75, 58, 69, 63, 70, 76,
63, 65, 68, 69, 75, 75, 75, 75, e 59, 76, 76, 58,

70, 73.. 75, 75.. 59, 70, 67..

This probably wouldn't happen, just as you
probably wouldn't draw the Queen of
Hearts 10 times in a row when drawing

from a shuffled deck of cards. The point of
including this is to show a possibility. e



Simulating the Bootstrap

sample = [..] # The data that you’ve collected, say, heights
num_trials = 10000

means = make_array()

for i in np.arange(num_trials):
# Note: np.random.choice samples with replacement, as we want
resampled = np.random.choice(sample, 1000)
means = np.append(means, np.mean(resampled))

Note that this looks exactly like a regular hypothesis test simulation. That's because
that's exactly what this is — the only difference is, we're sampling from a sample!




Bootstrapping - The End Goal

Remember, at the end of all of this, we're trying to estimate a
population parameter. We don't know the actual
parameter, and we have no way of finding it out — if we did,
all of this would be useless.

Suppose we're trying to estimate the mean height of everyone
at Berkeley. After bootstrapping, we'll have a large number
(say, 10,000) of sample statistics. How can we analyze
these to estimate where the parameter lies?

Confidence intervals.



Bootstrapping - Constructing a CI

We construct a k% confidence interval by looking at the middle
k% of values from our re-sampled statistics. Continuing with
our example, we'd look at the middle k% of our re-sampled
heights to get an estimate of where our parameter lies.

Typically we use a confidence level of 90% or 95%.

Note: k% confidence interval —> (100-k)% p-value

Remember: 95% confidence doesn’t mean that there is a 95%
chance that the parameter is in the interval. It means that using
this sampling technique, about 95% of the time we will have

created a good interval (one that contains the parameter).

This is a subtle difference, but an important one. We never know where the true parameter lies;
this is an important concept to keep in mind.
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Confidence vs. Interval Width

80% confidence

50 55 60 65 70
resampled means
95% confidence

50 55

60 65 70
resampled _means

14 -

Percent per unit

10 A

90% confidence

50 55 60 65 70 75 80
resampled _means

The greater the confidence level we wish

to have, the greater the width of our

confidence interval will be. This makes
sense, because to be more confident that

an interval will contain our parameter, we
need to look at more values.

DATA8
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# How to find a k% confidence 1interval
lower_bound = percentile((100-k)/2, means)
upper_bound = percentile(100-(100-k)/2, means)




