DS 100/200: Principles and Techniques of Data Science
Discussion #13
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Date: May 1, 2020

PCA

1. Principal Component Analysis (PCA) is one of the most popular dimensionality reduction

techniques because it is relatively easy to compute and its

output is interpretable. To get a

better understanding of what PCA is doing to a dataset, let’s imagine applying it to points
contained within this surfboard. The origin is in the center of the board, and each point within
the board has three attributes: how far (in inches) along the board’s length, width, and thickness
the point is from the center. These three dimensions determine the spread of the data.
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(a) If we were to apply PCA to the surfboard, what would the first three principal compo-
nents (PCs) represent? Feel free to draw and label these dimensions on the image of the
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(b) Which of the three PCs should be used to create a 2D representation of the surfboard?

How come? Make a sketch of the 2D projection below.
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2. Compare the scree plots produced by performing PCA on dataset A and on dataset B. For
which dataset would PCA provide the most informative scatter-plot (i.e. plotting PC1 and
PC2)? Note that the columns of both datasets were centered to have means of 0 and scaled to
have a variance of 1.
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3. Consider the following dataset X:

| Observations || Variable 1 | Variable 2 | Variable 3 |

1 -3.59 7.39 -0.78

2 -8.37 -5.32 0.90

3 71.757/ -0.61 -0.62

4 10.21 -1.46 0.50
Mean 0 0 0

Variance 63.42 28.47 0.68

After performing PCA on this data, we find that X = UXV' ", where:
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(a) The first principal component can be computed through two approaches: (0. ( {

1. Using the left-singular matrix and the diagonal matrix.

2. Using the right singular-matrix and the data matrix. Hint: Shuffle the terms of the
SVD.

Compute the first principal component using both approaches (round to 2 decimals).

(b) Given the results of (a), how can we interpret the columns of VV? What do the values in
these columns represent? 70
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(c) Is there a relationship between the largest entrles in the ns of V" and the variances

of X’s variables? If so, what is it?

Clustering

4. (a) Describe the difference between clustering and classification.
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(b) The process of Titting a K-means model outputs a set of K centers. We can compute the
quality of the output by computing the distortion on the dataset. A Data 100 student sug-
gests that distortion is not well-defined when evaluating the output of our agglomerative
clustering algorithm because the algorithm doesn’t return centers, but simply labels each
point individually. Is the student correct?
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(c) Describe qualitatively what it means for a data point to have a negative silhouette score.
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