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Agenda

e Random Variables
e Bias-Variance Trade-off

e Regularization

As per usual, everything will be posted at

http://surajrampure.com/teaching/ds100.htmi

In addition, here's a feedback form:

http://tinyurl.com/feedbacksuraj



Random Variables

The two common discrete probability distributions we use in this class are the Bernoulli and
Binomial distributions.
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Bernoulli Distribution

e Models a single trial of some event.
o For example, a single flip of a coin.
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Binomial Distribution

o Models the number of successes in 1 independent trials of some event, each of which

suceed with probability p. L/ 'Pmmﬂrc:l‘br

o Can be thought of as a sum of n indepedent and identically distributed (i.i.d.) Bernoulli
random variables.

o For example: Suppose | flip a coin 12 times. It lands heads each time with probability 0.60.
What's the probability | see 7 heads?

e Two parameters: n, p.
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Bias-Variance
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Bias-Variance Decomposition

Suppose € is some random variable such that E[¢] = 0 and var[e] = o2. Also, suppose we
have Y generated as follows:

Y =g(x)+e€ 5 v moddd
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e Our goal is to come up with the best estimate of g(:v) possible.

e To do this, we collect some sample points {(azz, yZ 1 and fit a model fo( )

o Note, Y = f;(z). E[(‘/ -—‘1) 1 7(‘.6(7() 17017‘726(

» We define the model risk as E[(Y — f;())?].
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The model risk can be decomposed into: w}a
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This is sometimes referred to as the bias-variance decomposition.




Bias and Variance

Note: Both of the following depend on our prediction f; () (and hence, our choice of é).
Bias
g(x) — E[f; ()]
o The expected difference between the true value and our prediction.

e High bias typically indicates underfitting.
e Intuitively: Model may be too basic to capture the un jlylng relatlonshlp
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Model Variance:

e Variance of f;(x), our prediction.
e Intuitively: How much our predictions vary, given unseen data.

e High variance indicates overfitting to training data.



Polynomial regression with large d, small d:
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The high degree polynomial model has lower bias, but higher variance, than the model on the
right.

One way to interpret variance: In the model on the left, if we were to introduce a new point, our

polynomial model would change significantly. However, on the right, introducing a new point is
unlikely to change our model by much.



Model Complexity

Observation: We can make our training error arbitrarily close to O, by adding more and more

features.

Why don't we do this?
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Pitfalls of Ordinary Least Squares

In Ordinary Least Squares, our goal was to find the vector @ that minimizes the following

empirical risk: ,\{ X é

1
R(6) = ||y — X613

~— MSE

A

The optimal value of @ (i.e. 0) is given by
0= (XTX)1xTy

Issues with OLS:

» Solution doesn't always exist (if X is not full-rank, X X will not be full rank).

e Potential overfitting to training set — model can be too complex.
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Pitfalls of Ordinary Least Squares

Solution: Add penalty on magnitude of 6.

Now, our optimization problem is to find the 8 that minimizes

1
R(0) = —||ly — X6]||2 + AS(6)

n

o 1FS(6) = P, 62 = ||0||3, we are performing L, regularization, called ridge regression.

. IfS(@) =Y ,10:| = 1|0
9,

1, we are performing L1 regularization, called LASSO.

e Note: ||z||s = \/2? + 22 + ... + 22, and ||z||1 = |z1| + |Z2| + ... + | 0]
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Ridge Regression

When we use the L vector norm for the penalty term, our objective function becomes
1 2 2
R(0) = - [[y — X0| 2 + A||o|

Solution can also be determined using vector calculus.

:»)erﬁ;ge = (XX +nA) ' X"y ,

e )\ represents the penalty on the size of our model. It is a hyperparameter, in that we get to

choose it as opposed to learn it from our data. We will discuss this more shortly.
—_

o Unlike OLS, Ridge Regression always has a unique solution!
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LASSO Regression

When we use the L vector norm for the penalty term, our objective function becomes
1 2
R(O) = - ||y — x0| 2 + (Tlo],

Unlike OLS and Ridge Regression, there is (in general) no closed form solution. Need to use a
numerical method, such as gradient descent.

e Again, A represents the penalty on the size of our model.

—

e LASSO regression encourages sparsity, that is, it sets many of the entries in our @ vector to O.

LASSO effectively selects features for us, and also makes our model less complex (many
weights set to O ——> less features used —> less complex)
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0.d=1

Regularization and Bias / Variance

Let's analyze the objective function for ridge regression (however, the analysis is the same for

LASSO).
A

AT
As )\ increases, model compIeX|tydecreas§s. q3e %[' 6 \Z

mm—

1
R(6) = 1|y — X6 + Allo]:

e Thisis because increasing A increases the penalty on the magnitude of 6.

9
|6’| }2 must decrease.

e Since we are trying to minimize the objective, if X increases,

As aresult, as )\ increases, bias increases, and model variance decreases.

e Bias increases because our model becomes less complex, and thus more general.

e Variance decreases because, again, our model becomes more general.
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Increasing Model Complexity =

Reminder: Model complexity and \ are inversely related!

16



