DS 100/200: Principles and Techniques of Data Science

Date: April 10, 2020

Discussion #10

Name:

Bias-Variance Trade-Off

- 1. Your team would like to train a machine learning model in order to predict the next YouTube video that a user will click on based on the videos the user has watched in the past. We extract m attributes (such as length of video, view count etc) from each video and our model will be based on the previous d videos watched by that user. Hence the number of features for each data point for the model is $m \cdot d$. You're not sure how many videos to consider.
 - (a) Your colleague generates the following plot, where the value d is on the x axis. However, they forgot to label the y-axis.

Which of the following could the y axis represent? Select all that apply.

- A Training Error
- **NB** Validation Error
- C. Bias
- \Box D. Variance
- (b) Your colleague generates the following plot, where the value d is on the x axis. However, they forgot to label the y-axis.

Which of the following could the y axis represent? Select all that apply.

- A Training Error
 B. Validation Error
 C. Bias
 D. Variance
- We randomly sample some data (x_i, y_i)ⁿ_{i=1} and use it to fit a model f_θ(x) according to some procedure (e.g. OLS, Ridge, LASSO). We then sample a new point that is independent from our existing points, but sampled from the same underlying truth as our data. Furthermore, assume that we have a function g(x) and some noise generation process that produces ε such that E [ε] = 0 and var(ε) = σ². Every time we query mother nature for Y at a given a x, she gives us Y = g(x) + ε. (The true function for our data is Y = g(x) + ε.) A new ε is generated each time, independent of the last. In class, we showed that

$$\underbrace{\mathbb{E}\left[(Y - f_{\hat{\theta}}(x))^2\right]}_{\text{obs. variance}} = \underbrace{\sigma^2}_{\theta \text{ ins}^2} + \underbrace{(g(x) - \mathbb{E}\left[f_{\hat{\theta}}(x)\right])^2}_{\theta \text{ ins}^2} + \underbrace{\mathbb{E}\left[(f_{\hat{\theta}}(x) - \mathbb{E}\left[f_{\hat{\theta}}(x)\right])^2\right]}_{\text{model variance}}$$

- (a) Label each of the terms above. Word bank: observation variance, model variance, observation bias², model bias², model risk, empirical mean square error.
- (b) What is random in the equation above? Where does the randomness come from?

Y: depends on
$$\in$$

 $f_{\hat{\theta}}(x)$: random $-$ no ise m Y (from \in)
 $-$ generated from $\hat{\sigma}$
sample of Ys
Thus an follow and emploin $\mathbb{P}[f_{\hat{\sigma}}(x)] = 0$

(c) True or false and explain. $\mathbb{E} \left[\epsilon f_{\hat{\theta}}(x) \right] = 0$

True :
$$\in$$
 and $f_{\hat{o}}(x)$ are independent.
For independent RVs, $E[XY] = E[X] \in [D]$.
Then, $E[ef_{\hat{o}}(x)] = E[e] \in [f_{\hat{o}}(x)] = O \cdot E[f_{\hat{o}}(x)] = O$.

(d) Suppose you lived in a world where you could collect as many data sets you would like. Given a fixed algorithm to fit a model f_{θ} to your data e.g. linear regression, describe a procedure to get good estimates of $\mathbb{E}[f_{\hat{\theta}}(x)]$

repeat as many times as possible: ______ Then, take overage -sample data -fit model models

- (e) If you could collect as many data sets as you would like, how does that affect the quality of your model f_θ(x)? → good estimate of E [f_θ(x)]
 but if you chose a poor model to begin with, doesn't if you with, doesn't if you it
 - 3. Earlier, we posed the linear regression problem as follows: Find the $\vec{\theta}$ value that minimizes the average squared loss. In other words, our goal is to find $\vec{\theta}$ that satisfies the equation below:

$$\vec{\hat{\theta}} = \operatorname*{argmin}_{\vec{\theta}} L(\vec{\theta}) = \operatorname*{argmin}_{\vec{\theta}} \frac{1}{n} ||\vec{y} - \mathbb{X}\vec{\theta}||_2^2$$

Here, \mathbb{X} is a $n \times d$ matrix, $\vec{\theta}$ is a $d \times 1$ vector and \vec{y} is a $n \times 1$ vector. As we saw in lecture, the optimal $\vec{\theta}$ is given by the closed form expression $\vec{\theta} = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^t \vec{y}$.

To prevent overfitting, we saw that we can instead minimize the sum of the average squared loss plus a regularization function $\alpha S(\vec{\theta})$. If use the function $S(\vec{\theta}) = ||\vec{\theta}||_2^2$, we have "ridge regression". If we use the function $S(\vec{\theta}) = ||\vec{\theta}||_1$, we have "LASSO regression". For example, if we choose $S(\vec{\theta}) = ||\vec{\theta}||_2^2$, our goal is to find $\vec{\theta}$ that satisfies the equation below:

$$\hat{\theta} = \operatorname*{argmin}_{\vec{\theta}} L(\vec{\theta}) = \operatorname*{argmin}_{\vec{\theta}} \frac{1}{n} ||\vec{y} - \mathbb{X}\vec{\theta}||_2^2 + \alpha ||\vec{\theta}||_2^2 = \operatorname*{argmin}_{\vec{\theta}} \frac{1}{n} \sum_{i=1}^n (y_i - \mathbb{X}_{i,\cdot}^T \vec{\theta})^2 + \alpha \sum_{j=1}^d \theta_j^2$$

Recall that α is a hyperparameter that determines the impact of the regularization term. Though we did not discuss this in lecture, we can also find a closed form solution to ridge regression: $\vec{\theta} = (\mathbb{X}^T \mathbb{X} + n\alpha \mathbf{I})^{-1} \mathbb{X}^T \vec{y}$. It turns out that $\mathbb{X}^T \mathbb{X} + n\alpha \mathbf{I}$ is guaranteed to be invertible (unlike $\mathbb{X}^T \mathbb{X}$ which might not be invertible).

(a) As model complexity increases, what happens to the bias and variance of the model?

Discussion #10

 $fl \cdot c = 1$

(b) In terms of bias and variance, how does a regularized model compare to ordinary least -, increased bias -> (ower variance squares regression?

decreased complexity

(c) In ridge regression, what happens if we set $\alpha = 0$? What happens as α approaches ∞ ? d:o: same as OLS

```
\alpha \rightarrow \infty : A \rightarrow 0
```

(d) How does model complexity compare between ridge regression and ordinary least squares regression? How does this change for large and small values of α ?

answered above

(e) If we have a large number of features (10,000+) and we suspect that only a handful of features are useful, which type of regression (Lasso vs Ridge) would be more helpful in interpreting useful features?

```
LASSO : encourages spensity
```

(f) What are the benefits of using ridge regression?

```
guaranteed solution, more general model
```

Random Variables

4. The average response time for a question on Piazza this semester was 11 minutes. As always, the number of questions answered by each TA is highly variable, with a few TAs going above and beyond the call of duty. Below are the number of contributions for the top four TAs (out of 20,000 total Piazza contributions):

TA	# contributions
Daniel	2000
Suraj	1800
Manana	700
Allen	500

Suppose we take a sample with replacement of size n = 500 contributions from the original 20,000 contributions. We will also define some random variables:

• $D_i = 1$ when the *i*th contribution in our sample is made by Daniel; else $D_i = 0$.

- $S_i = 1$ when the *i*th contribution in our sample is made by Suraj; else $S_i = 0$.
- $M_i = 1$ when the *i*th contribution in our sample is made by Manana; else $M_i = 0$.
- $A_i = 1$ when the *i*th contribution in our sample is made by Allen; else $A_i = 0$.
- $O_i = 1$ when the i^{th} contribution is made by anyone other than Daniel, Suraj, Manana,

or Aller; else,
$$O_i = 0$$

(a) i. What is $P(A_1 = 1)$?
 $P(A_1 = 1) = \underbrace{500}_{20000}$
ii. What is $\mathbb{E}[S_1]$?
 $\mathbb{E}[S_1] = \underbrace{100}_{20000}$
iii. What is $\mathbb{E}[M_{100}]$?
 $\mathbb{E}[M_{100}] = \underbrace{100}_{20000}$
iv. What is $Var[D_{50}]$?
 $Var[D_{50}] = \underbrace{10}_{0} \cdot (1 - \frac{1}{10})$
v. What is $Var[D_{50}]$?
 $Var[D_{50}] = \underbrace{10}_{0} \cdot (1 - \frac{1}{10})$
v. What is $Var(D_{50}]$?
 $Var[D_{50}] = \underbrace{10}_{0} \cdot (1 - \frac{1}{10})$
v. What is $Var(D_{50}]$?
 $N_{5} = \sum_{i=1}^{500} D_{i}$
 $N_{5} = \sum_{i=0}^{500} A_{i}$
 $N_{6} = \sum_{i=1}^{500} \sum_$

20000

2

$$\operatorname{Var}(N_D + N_S + N_A + N_M + N_O) =$$

(c) Now, suppose we take a sample with replacement of 20 contributions, what is the probability that 7 were by Daniel?

distribution Probability =

- $y = \begin{pmatrix} 20 \\ 7 \end{pmatrix} \left(\frac{1}{10}\right)^{7} \left(\frac{9}{10}\right)^{13}$
- $p = \frac{1}{10}$

20000

(d) Finally, suppose we take a sample with replacement of 10 contributions. What is the probability that 3 were by Daniel, 3 were by Suraj, and 4 were by Manana? (Note: Refer to Lecture 2 to refresh your knowledge on how to calculate this type of probability)

Probability
$$\frac{10!}{3!3!4!} (\frac{1}{10})^3 (\frac{1800}{20000}) (\frac{700}{20000})^{-1}$$

 $\frac{10!}{3!3!4!} = (\frac{1800}{3}) (\frac{7}{20000})^{-1}$
 $\frac{10!}{3!3!4!} = (\frac{10}{3}) (\frac{7}{3})$
 $\frac{10!}{7} = \frac{10}{7}$
 $\frac{10!}{7} = \frac{10}{7}$

6