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Bias-Variance Decomposition

Suppose € is some random variable such that [E[e] = 0 and var|[e] = 0. Also, suppose we

have Y generated as follows:
Y =h(x)+e€

We collect some sample points { (z;, ¥;) }1~1, and want to fit a model f3(x). We define the
model risk as E[(Y — fz(x))?].

E[(Y — f3(z))’] = 0" + (h(z) — E[fs(2)])* + E[(E[fs(2)] — fs(2))]
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This is sometimes referred to as the bias-variance decomposition.



Bias and Variance

Note: Both of the following depend on our prediction fz(x) (and hence, our choice of B.)
Bias
h(z) — E[fs(z)]

o The difference between the true value and our expected prediction
e High bias typically indicates underfitting

e Intuitively: Model may be too basic to capture the underlying relationship

Zo call -

Model Variance: Vs [X]: E (;(X“E E)(Dj
E[(E[fs(z)] - f5(x))"]

e Variance of fz(z), our prediction
e Intuitively: How much our predictions vary, given unseen data

e High variance indicates overfitting to training data



Polynomial regression with large d, small d:
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The high degree polynomial model has lower bias, but higher variance, than the model on the
right.
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One way to interpret variance: In the model on the left, if we were to introduce a new point, our

polynomial model would change significantly. However, on the right, introducing a new point is
unlikely to change our model by much.



Model Complexity

Observation: We can make our training error arbitrarily close to O, by adding more and more

features.

Why don't we do this?
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Pitfalls of Ordinary Least Squares

In Ordinary Least Squares, our goal was to find the vector £ that minimizes the following

empirical risk:
R(B) = ~Ily — XAl
The optimal value of (3 (i.e. B) is given by
B=(X"X)"X"y

Issues with OLS:

» Solution doesn't always exist (if X is not full-rank, X X will not be full rank)

e Potential overfitting to training set — model can be too complex
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Pitfalls of Ordinary Least Squares

Solution: Add penalty on magnitude of (3.

Now, our optimization problem is to find the £ that minimizes

R(B) = [y = XB|[} + AS(8)

%, we are performing L5 regularization, called ridge regression

« 1S(B) = SF_, B2 = ||B]
« 1S(B) = > 1116l = |IB)

regression

1, we are performing L regularization, called LASSO
Fr]
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e Note: ||z||s = v/ 4+ 22 + ... + 22, and ||| = |21| + |22| + ... + |20l



Ridge Regression

When we use the L vector norm for the penalty term, our objective function becomes

1
e T
= %,"’24‘”' P

Solution can also be determined using vector calculus.
" T —1vT
= Bridge = (XTX + )1 X7y

e )\ represents the penalty on the size of our model. It is a hyperparameter, in that we get to
choose it as opposed to learn it from our data. We will discuss this more shortly.

e Unlike OLS, Ridge Regression always has a unique solution!
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LASSO Regression

When we use the L1 vector norm for the penalty term, our objective function becomes

1 2
R(B) = ﬁHy—XﬁHZ—F)\UEH_l/ _ ’F"+[Fz)«f~-—'f ‘Fr\

Unlike OLS and Ridge Regression, there is (in general) no closed form solution. Need to use a
numerical method, such as gradient descent.

e Again, )\ represents the penalty on the size of our model.

o LASSO regression encourages sparsity, that is, it sets many of the entries in our 8 vector to
0. LASSO effectively selects features for us, and also makes our model less complex (many
weights set to O ——> less features used ——> less complex)

Fun fact: LASSO stands for Least Absolute Shrinkage and Selection Operator.
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Ly vs. Ly vector norms: (3,4) vs. (5, 0) L, (5 , t > -
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Regularization and Bias / Variance

Let's analyze the objective function for ridge regression (however, the analysis is the same for
LASSO).

1
R(B) = 2|y - x8I[3 + 8]

As ) increases, model complexity decreases.

e Thisis because increasing A increases the penalty on the magnitude of 3.

2
|B‘ |2 must decrease.

e Since we are trying to minimize the objective, if X increases,
As aresult, as )\ increases, bias increases, and model variance decreases.

e Bias increases because our model becomes less complex, and thus more general.

e Variance decreases because, again, our model becomes more general.
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Increasing Model Complexity =

Reminder: Model complexity and \ are inversely related!
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Motivating Cross Validation

Question: How do we select a subset of features to use? How do we select a value of \?

One approach:

1. Select several different candidate values of )\, and train our model on each of them

2. Select the A of the model that had the lowest training error

Why is this not a great approach?
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Motivating Cross Validation

A slightly more robust approach:

1. Splitdatainto train and test sets

2. Select several different candidate values of A, and train our model on each of them using the

train data

3. Select the ) of the model that had the lowest error onthe test set
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Cross Validation

Cross validation simulates multiple train-test splits on the training data.

Validation
Split

)

Validate
Generalization -
5-Fold

Cross Validation

Train - Test
Split

)

Train
Train
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Pseudocode for Cross Validation

split data into train and test
split train into n disjoint partitions (folds)

errors_for_lambda = []

for each candidate value of lambda:
errors_for _folds = []
for i =1, 2, ..., n:
set fold 1 to be "validation"
set all other folds to be "train"
train model on "train"
evaluate error using "validation", and add to errors_for_folds
put mean(errors_for_folds) into errors_for_lambda

select lambda with lowest entry in errors_for_lambda

Note: Here, we used the specific example of choosing different A values. However, this exact

procedure holds for choosing different subsets of features.
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